Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1999, Volume 54, Issue 3, Pages 479–564
DOI: https://doi.org/10.1070/rm1999v054n03ABEH000152
(Mi rm152)
 

This article is cited in 8 scientific papers (total in 8 papers)

Well-posedness of problems in fluid dynamics (a fluid-dynamical point of view)

R. Kh. Zeytounian

University of Sciences and Technologies
References:
Abstract: The proofs of the existence, uniqueness, smoothness, and stability of solutions of problems in fluid dynamics are needed to give meaning to the equations and corresponding initial and boundary conditions that govern these problems.
For any arbitrary reasonable choice of a class of admissible initial data, a problem in fluid dynamics must be well posed (in the Hadamard sense [1]). This means that (a) the problem has a solution for any initial data in this class, (b) this solution is unique for any initial conditions, (c) the solution depends continuously on the initial data. In this paper we give a survey of some aspects of problems on well-posedness from the point of view of fluid dynamics itself; these problems form a very difficult and at the same time important part of fluid mechanics.
Received: 15.06.1997
Russian version:
Uspekhi Matematicheskikh Nauk, 1999, Volume 54, Issue 3(327), Pages 3–92
DOI: https://doi.org/10.4213/rm152
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: R. Kh. Zeytounian, “Well-posedness of problems in fluid dynamics (a fluid-dynamical point of view)”, Uspekhi Mat. Nauk, 54:3(327) (1999), 3–92; Russian Math. Surveys, 54:3 (1999), 479–564
Citation in format AMSBIB
\Bibitem{Zey99}
\by R.~Kh.~Zeytounian
\paper Well-posedness of problems in fluid dynamics (a~fluid-dynamical point of view)
\jour Uspekhi Mat. Nauk
\yr 1999
\vol 54
\issue 3(327)
\pages 3--92
\mathnet{http://mi.mathnet.ru/rm152}
\crossref{https://doi.org/10.4213/rm152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1728642}
\zmath{https://zbmath.org/?q=an:0970.76004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1999RuMaS..54..479Z}
\transl
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 3
\pages 479--564
\crossref{https://doi.org/10.1070/rm1999v054n03ABEH000152}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000084485600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0346543898}
Linking options:
  • https://www.mathnet.ru/eng/rm152
  • https://doi.org/10.1070/rm1999v054n03ABEH000152
  • https://www.mathnet.ru/eng/rm/v54/i3/p3
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:760
    Russian version PDF:318
    English version PDF:69
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024