Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2005, Volume 60, Issue 1, Pages 1–26
DOI: https://doi.org/10.1070/RM2005v060n01ABEH000806
(Mi rm1386)
 

This article is cited in 22 scientific papers (total in 22 papers)

Topology of quasi-periodic functions on the plane

I. A. Dynnikova, S. P. Novikovbc

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
c University of Maryland
References:
Abstract: In this paper the topological theory of quasi-periodic functions on the plane is presented. The development of this theory was started (in another terminology) by the Moscow topology group in the early 1980s, motivated by needs of solid state physics which led to the necessity of investigating a special (non-generic) case of Hamiltonian foliations on Fermi surfaces with a multivalued Hamiltonian function [1]. These foliations turned out to have unexpected topological properties, discovered in the 1980s ([2], [3]) and 1990s ([4]–[6]), which led finally to non-trivial physical conclusions ([7], [8]) by considering the so-called geometric strong magnetic field limit [9]. A reformulation of the problem in terms of quasi-periodic functions and an extension to higher dimensions in 1999 [10] produced a new and fruitful approach. One can say that for monocrystalline normal metals in a magnetic field the semiclassical trajectories of electrons in the quasi-momentum space are exactly the level curves of a quasi-periodic function with three quasi-periods which is the restriction of the dispersion relation to the plane orthogonal to the magnetic field. The general study of topological properties of level curves for quasi-periodic functions on the plane with arbitrarily many quasi-periods began in 1999 when some new ideas were formulated in the case of four quasi-periods [10]. The last section of this paper contains a complete proof of these results based on the technique developed in [11] and [12]. Some new physical applications of the general problem were found recently [13].
Received: 26.12.2004
Bibliographic databases:
Document Type: Article
UDC: 515.16
MSC: Primary 37N20, 37J05; Secondary 37E35, 37C55, 70K43, 82D35, 82D25
Language: English
Original paper language: Russian
Citation: I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26
Citation in format AMSBIB
\Bibitem{DynNov05}
\by I.~A.~Dynnikov, S.~P.~Novikov
\paper Topology of quasi-periodic functions on the plane
\jour Russian Math. Surveys
\yr 2005
\vol 60
\issue 1
\pages 1--26
\mathnet{http://mi.mathnet.ru/eng/rm1386}
\crossref{https://doi.org/10.1070/RM2005v060n01ABEH000806}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2145658}
\zmath{https://zbmath.org/?q=an:1148.37043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005RuMaS..60....1D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229893400001}
\elib{https://elibrary.ru/item.asp?id=25787148}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20444499701}
Linking options:
  • https://www.mathnet.ru/eng/rm1386
  • https://doi.org/10.1070/RM2005v060n01ABEH000806
  • https://www.mathnet.ru/eng/rm/v60/i1/p3
  • This publication is cited in the following 22 articles:
    1. A. Ya. Maltsev, “On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations”, Proc. Steklov Inst. Math., 325 (2024), 163–176  mathnet  crossref  crossref  zmath
    2. Jon Wilkening, Xinyu Zhao, “Spatially quasi-periodic bifurcations from periodic traveling water waves and a method for detecting bifurcations using signed singular values”, Journal of Computational Physics, 478 (2023), 111954  crossref
    3. Jon Wilkening, Xinyu Zhao, “Spatially quasi-periodic water waves of finite depth”, Proc. R. Soc. A., 479:2272 (2023)  crossref
    4. I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Geometry of quasiperiodic functions on the plane”, Russian Math. Surveys, 77:6 (2022), 1061–1085  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A. Ya. Maltsev, S. P. Novikov, “Open level lines of a superposition of periodic potentials on a plane”, Ann. Physics, 447 (2022), 169039–11  mathnet  crossref  isi
    6. Dynnikov I. Maltsev A., “Features of the Motion of Ultracold Atoms in Quasiperiodic Potentials”, J. Exp. Theor. Phys., 133:6 (2021), 711–736  crossref  mathscinet  isi
    7. Makarova M.V., Kovalew I.A., Serow D.W., “Structurally Stable Symmetric Tilings on the Plane”, Nonlinear Phenom. Complex Syst., 24:2 (2021), 156–165  crossref  isi
    8. Wilkening J., Zhao X., “Spatially Quasi-Periodic Water Waves of Infinite Depth”, J. Nonlinear Sci., 31:3 (2021), 52  crossref  mathscinet  isi
    9. Trans. Moscow Math. Soc., 82 (2021), 133–147  mathnet  crossref
    10. Berry V M., “Classical and Quantum Complex Hamiltonian Curl Forces”, J. Phys. A-Math. Theor., 53:41 (2020), 415201  crossref  mathscinet  isi
    11. A. Ya. Maltsev, S. P. Novikov, “Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter”, Russian Math. Surveys, 74:1 (2019), 141–173  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. De Leo R. Maltsev A.Y., “Quasiperiodic Dynamics and Magnetoresistance in Normal Metals”, Acta Appl. Math., 162:1 (2019), 47–61  crossref  mathscinet  isi
    14. De Leo R., “A Survey on Quasiperiodic Topology”, Advanced Mathematical Methods in Biosciences and Applications, Steam-H Science Technology Engineering Agriculture Mathematics & Health, ed. Berezovskaya F. Toni B., Springer International Publishing Ag, 2019, 53–88  crossref  mathscinet  isi
    15. A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297  mathnet  crossref  crossref  mathscinet  isi  elib
    16. A. B. Antonevich, A. N. Buzulutskaya (Glaz), “Almost-Periodic Algebras and Their Automorphisms”, Math. Notes, 102:5 (2017), 610–622  mathnet  crossref  crossref  mathscinet  isi  elib
    17. E. B. Vul, Ya. G. Sinai, K. M. Khanin, Selecta, 2010, 213  crossref
    18. Birindelli I., Valdinoci E., “The Ginzburg-Landau equation in the Heisenberg group”, Commun. Contemp. Math., 10:5 (2008), 671–719  crossref  mathscinet  zmath  isi  elib  scopus
    19. Novikov S.P., “Dynamical Systems and Differential Forms. Low Dimensional Hamiltonian Systems”, Geometric and Probabilistic Structures in Dynamics, Contemporary Mathematics Series, 469, 2008, 271–287  crossref  mathscinet  zmath  isi
    20. Grinevich P.G., Santini P.M., “Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve μ2=νn1, nZ: ergodicity, isochrony and fractals”, Phys. D, 232:1 (2007), 22–32  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1491
    Russian version PDF:624
    English version PDF:61
    References:130
    First page:6
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025