Citation:
D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, “Statistical properties of the spectra of Laplace–Beltrami operators on Liouville surfaces”, Russian Math. Surveys, 48:4 (1993), 1–142
\Bibitem{KosMinSin93}
\by D.~V.~Kosygin, A.~A.~Minasov, Ya.~G.~Sinai
\paper Statistical properties of the spectra of Laplace--Beltrami operators on Liouville surfaces
\jour Russian Math. Surveys
\yr 1993
\vol 48
\issue 4
\pages 1--142
\mathnet{http://mi.mathnet.ru/eng/rm1314}
\crossref{https://doi.org/10.1070/RM1993v048n04ABEH001052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1257884}
\zmath{https://zbmath.org/?q=an:0838.58041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993RuMaS..48....1M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NY15100001}
Linking options:
https://www.mathnet.ru/eng/rm1314
https://doi.org/10.1070/RM1993v048n04ABEH001052
https://www.mathnet.ru/eng/rm/v48/i4/p3
This publication is cited in the following 35 articles:
D. A. Popov, “Spectrum of the Laplace operator on closed surfaces”, Russian Math. Surveys, 77:1 (2022), 81–97
D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Russian Math. Surveys, 74:5 (2019), 909–925
S. Yu. Dobrokhotov, D. S. Minenkov, S. B. Shlosman, “Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber”, Theoret. and Math. Phys., 197:2 (2018), 1626–1634
A. Yu. Anikin, S. Yu. Dobrokhotov, M. I. Katsnel'son, “Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers”, Theoret. and Math. Phys., 188:2 (2016), 1210–1235
L. D. Pustylnikov, “O gipoteze kvantovogo khaosa i obobschennykh tsepnykh drobyakh”, Preprinty IPM im. M. V. Keldysha, 2015, 037, 12 pp.
Robert Strichartz, “Average error for spectral asymptotics on surfaces”, CPAA, 15:1 (2015), 9
L. D. Pustyl'nikov, “Energy Levels of Quantum Periodic Systems and Quantum Chaos”, Preprinty IPM im. M. V. Keldysha, 2014, 027, 8 pp.
D. A. Popov, “On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces”, Funct. Anal. Appl., 48:2 (2014), 150–153
D. A. Popov, “Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus g>1g>1”, Funct. Anal. Appl., 46:2 (2012), 133–146
Vladimir S. MATVEEV, “Pseudo-Riemannian metrics on closed surfaces whose geodesic flows admit nontrivial integrals quadratic in momenta, and proof of the projective Obata conjecture for two-dimensional pseudo-Riemannian metrics”, J. Math. Soc. Japan, 64:1 (2012)
D. A. Popov, “On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains”, Izv. Math., 75:5 (2011), 1007–1045
Lapointe H., “A Remainder Estimate for Weyl's Law on Liouville Tori”, Spectrum and Dynamics, Crm Proceedings & Lecture Notes, 52, 2010, 89–114
Ya. G. Sinai, Visions in Mathematics, 2010, 425
D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems
under continuous passage from a definite problem to an indefinite one”, Izv. Math., 73:3 (2009), 579–610
Hugues Lapointe, Iosif Polterovich, Yuri Safarov, “Average Growth of the Spectral Function on a Riemannian Manifold”, Communications in Partial Differential Equations, 34:6 (2009), 581
D. A. Popov, “Remarks on uniform combined estimates of oscillatory integrals
with simple singularities”, Izv. Math., 72:4 (2008), 793–816
A. I. Shtern, “Almost periodic functions and representations in locally convex spaces”, Russian Math. Surveys, 60:3 (2005), 489–557
Arnold's Problems, 2005, 181
L. D. Pustyl'nikov, “The quantum chaos conjecture and generalized continued fractions”, Sb. Math., 194:4 (2003), 575–587
Bruning, J, “The spectral asymptotics of the two-dimensional Schrodinger operator with a strong magnetic field. II”, Russian Journal of Mathematical Physics, 9:4 (2002), 400