Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1994, Volume 49, Issue 6, Pages 214–215
DOI: https://doi.org/10.1070/RM1994v049n06ABEH002459
(Mi rm1262)
 

This article is cited in 5 scientific papers (total in 6 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Can simple geometrical objects be maximal compact extensions for ${\mathbb R}^n$?

Yu. M. Smirnov

M. V. Lomonosov Moscow State University
References:
Received: 30.04.1994
Russian version:
Uspekhi Matematicheskikh Nauk, 1994, Volume 49, Issue 6(300), Pages 213–214
Bibliographic databases:
Document Type: Article
MSC: 57S05, 57S17
Language: English
Original paper language: Russian
Citation: Yu. M. Smirnov, “Can simple geometrical objects be maximal compact extensions for ${\mathbb R}^n$?”, Russian Math. Surveys, 49:6 (1994), 214–215
Citation in format AMSBIB
\Bibitem{Smi94}
\by Yu.~M.~Smirnov
\paper Can simple geometrical objects be maximal compact extensions for ${\mathbb R}^n$?
\jour Russian Math. Surveys
\yr 1994
\vol 49
\issue 6
\pages 214--215
\mathnet{http://mi.mathnet.ru//eng/rm1262}
\crossref{https://doi.org/10.1070/RM1994v049n06ABEH002459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1316881}
\zmath{https://zbmath.org/?q=an:0890.54022}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994RuMaS..49..214S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994TD11100014}
Linking options:
  • https://www.mathnet.ru/eng/rm1262
  • https://doi.org/10.1070/RM1994v049n06ABEH002459
  • https://www.mathnet.ru/eng/rm/v49/i6/p213
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:248
    Russian version PDF:98
    English version PDF:2
    References:29
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024