Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2024, Volume 79, Issue 4, Pages 733–735
DOI: https://doi.org/10.4213/rm10182e
(Mi rm10182)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

On the minimax solution of path-dependent Hamilton–Jacobi equations for neutral-type systems

M. I. Gomoyunovab, N. Yu. Lukoyanovab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
References:
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2024-1377
The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2024-1377).
Received: 12.06.2024
Bibliographic databases:
Document Type: Article
MSC: 35F21, 49L12
Language: English
Original paper language: Russian

Let $h > 0$, $T > 0$, $n \in \mathbb{N}$, and let $\operatorname{Lip}=\operatorname{Lip}([-h,T],\mathbb{R}^n)$ be the space of Lipschitz continuous functions $x \colon [-h,T] \to \mathbb{R}^n$ with the norm $\|x(\cdot)\|_\infty=\max_{\tau \in [-h,T]} \|x(\tau)\|$, where $\|\cdot\|$ is the Euclidean norm in $\mathbb{R}^n$. A functional $\varphi \colon [0,T] \times \operatorname{Lip} \to \mathbb{R}$ is called: (i) non-anticipative if, for all $(t, x(\cdot)) \in [0,T) \times \operatorname{Lip}$ and $y(\cdot) \in \operatorname{Lip}(t,x(\cdot))=\{\bar{y}(\cdot) \in\operatorname{Lip} \colon \bar{y}(\tau)=x(\tau), \, \tau \in [-h,t]\}$, the equality $\varphi(t,x(\cdot))=\varphi(t,y(\cdot))$ holds; (ii) coinvariantly ($ci$-) differentiable at a point $(t,x(\cdot)) \in [0,T) \times \operatorname{Lip}$ if there exist $\partial_t \varphi(t,x(\cdot)) \in \mathbb{R}$ and $\nabla \varphi(t,x(\cdot)) \in \mathbb{R}^n$ such that the relation below is satisfied for every function $y(\cdot) \in \operatorname{Lip}(t,x(\cdot))$:

$$ \begin{equation*} \varphi(\tau, y(\cdot))-\varphi(t,x(\cdot))=\partial_t \varphi(t,x(\cdot))(\tau-t)+ \langle\nabla\varphi(t,x(\cdot)),y(\tau)-x(t)\rangle+o(\tau-t), \end{equation*} \notag $$
where $\tau \in (t,T]$ and the function $o(\cdot)$ can depend on $y(\cdot)$, $o(\delta) / \delta \to 0$ as $\delta \to 0^+$; the quantities $\partial_t \varphi(t,x(\cdot))$ and $\nabla \varphi(t,x(\cdot))$ are called the $ci$-derivatives of $\varphi$ at the point $(t,x(\cdot))$.

Let the mappings $g \colon [0,T] \times \operatorname{Lip} \to \mathbb{R}^n$, $H \colon [0,T] \times \operatorname{Lip} \times \mathbb{R}^n \to \mathbb{R}$, and $\sigma \colon \operatorname{Lip} \to \mathbb{R}$ be given and satisfy the following assumptions (A): (i) $g$, $H$, and $\sigma$ are continuous; (ii) there exists $h_0 \in (0,h]$ such that for any $\mu > 0$ we can find $\lambda_g > 0$ for which

$$ \begin{equation*} \|g(t_1, x_1(\cdot))-g(t_2, x_2(\cdot))\|\leqslant \lambda_g \bigl(|t_1-t_2|+\|x_1(\,\cdot\,\wedge (t_1-h_0))- x_2(\,\cdot\,\wedge (t_2-h_0))\|_\infty \bigr) \end{equation*} \notag $$
for all $(t_1,x_1(\cdot)),(t_2,x_2(\cdot)) \in [0,T] \times X_\mu$; (iii) there exists $c_H > 0$ such that
$$ \begin{equation*} |H(t,x(\cdot),s_1)-H(t,x(\cdot),s_2)|\leqslant c_H\bigl(1+\|x(\,\cdot\,\wedge t)\|_\infty\bigr)\|s_1-s_2\| \end{equation*} \notag $$
for all $t \in [0,T]$, $x(\cdot) \in \operatorname{Lip}$, and $s_1,s_2 \in \mathbb{R}^n$; (iv) for any $\mu > 0$ there exists $\lambda_H > 0$ such that for all $t \in [0,T]$, $x_1(\cdot),x_2(\cdot) \in X_\mu$, and $s \in \mathbb{R}^n$,
$$ \begin{equation*} |H(t,x_1(\cdot),s)-H(t,x_2(\cdot), s)|\leqslant \lambda_H (1+\|s\|)\|x_1(\,\cdot\,\wedge t)- x_2(\,\cdot\,\wedge t)\|_\infty. \end{equation*} \notag $$
Here $a \wedge b=\min\{a,b\}$ and $X_\mu$ is the set of functions $x(\cdot) \in \operatorname{Lip}$ such that $\|x(\cdot)\|_\infty \leqslant \mu$ and $\|x(\tau_1)-x(\tau_2)\| \leqslant \mu|\tau_1-\tau_2|$ for all $\tau_1,\tau_2 \in [-h,T]$.

Consider the Cauchy problem (CP) for the path-dependent Hamilton–Jacobi equation

$$ \begin{equation*} \partial_t \varphi(t,x(\cdot))+ \langle \partial_t g(t,x(\cdot)),\nabla \varphi(t,x(\cdot)) \rangle+ H \bigl(t,x(\cdot),\nabla \varphi(t,x(\cdot)) \bigr)=0,\quad (t,x(\cdot)) \in X_\ast, \end{equation*} \notag $$
under the right-end boundary condition $\varphi(T,x(\cdot))=\sigma(x(\cdot))$, $x(\cdot) \in \operatorname{Lip}$. Here the non-anticipative functional $\varphi \colon [0,T] \times \operatorname{Lip} \to \mathbb{R}$ is to be found, $X_\ast$ denotes the set of points $(t,x(\cdot)) \in [0,T) \times \operatorname{Lip}$ at which all the coordinates $g_i \colon [0,T] \times \operatorname{Lip} \to \mathbb{R}$, $i = {1,\dots,n}$, of the mapping $g=(g_1,\dots,g_n)$ are $ci$-differentiable, $\partial_t g(t,x(\cdot))=(\partial_t g_1 (t,x(\cdot)),\dots,\partial_t g_n(t,x(\cdot)))$; $\langle\,\cdot\,{,}\,\cdot\,\rangle$ is the inner product in $\mathbb{R}^n$.

Cauchy problems of the type under consideration arise in the study of optimal control problems and differential games for dynamical systems whose motion is described by functional differential equations of neutral type in Hale’s form. As noted in the recent survey paper [1], under fairly natural and general assumptions (A) no results on the existence and uniqueness of a generalized (minimax) solution of the Cauchy problem (CP) have been obtained previously. The present brief communication fills this gap.

A minimax solution of the Cauchy problem (CP) is defined as a non-anticipative and continuous functional $\varphi \colon [0,T] \times \operatorname{Lip} \to \mathbb{R}$ that satisfies the boundary condition and has the following property: for any $(t,x(\cdot)) \in [0, T) \times \operatorname{Lip}$, $\vartheta \in (t,T]$, $s \in \mathbb{R}^n$, and $\varepsilon > 0$ there exist pairs $(y_1(\cdot),z_1(\cdot)), (y_2(\cdot),z_2(\cdot)) \in \operatorname{Sol}(t,x(\cdot),s)$ such that

$$ \begin{equation*} \varphi(\vartheta,y_1(\cdot))-z_1(\vartheta) \leqslant \varphi(t,x(\cdot))+\varepsilon\quad\text{and}\quad \varphi(\vartheta,y_2(\cdot))-z_2(\vartheta) \geqslant \varphi(t,x(\cdot))-\varepsilon. \end{equation*} \notag $$
Here $\operatorname{Sol}(t,x(\cdot),s)$ denotes the set of pairs $(y(\cdot),z(\cdot)) \in \operatorname{Lip}(t,x(\cdot)) \times \operatorname{Lip}([-h,T],\mathbb{R})$ such that $z(\tau)=0$, $\tau \in [-h,t]$, and for almost all $\tau \in [t,T]$
$$ \begin{equation*} \frac{\mathrm{d}}{\mathrm{d} \tau}\bigl(y(\tau)- g(\tau,y(\cdot)),z(\tau)\bigr)\in E(\tau,y(\cdot),s) \end{equation*} \notag $$
where $E(\tau,y(\cdot),s)=\{(f,\chi) \in \mathbb{R}^n \times \mathbb{R} \colon \|f\| \leqslant c_H(1+\|y(\,\cdot\,\wedge \,\tau)\|_\infty)$, and $\chi=\langle s,f \rangle- H(\tau,y(\cdot),s)\}$.

Theorem 1. Under assumptions (A) a minimax solution of the Cauchy problem (CP) exists and is unique.

Previously, theorems on the existence and uniqueness of a minimax solution of the Cauchy problem (CP) were proved under more restrictive conditions: in [2] the positive homogeneity of $H$ with respect to the third variable was assumed; in [3] and [4] the case where $g(t,x(\cdot))=g(t,x(t- h))$ and $H(t,x(\cdot),s)=H(t,x(t- h),s)$ was considered. The general case of assumptions (A) is covered by reasoning in accordance with the scheme from these works, but with the choice of a Lyapunov–Krasovskii functional described below.

Let $(t,x(\cdot)) \in [0,T) \times \operatorname{Lip}$. Choose $\mu > 0$ so that the inclusion $y(\cdot) \in X_\mu$ is valid for all $s \in \mathbb{R}^n$ and $(y(\cdot),z(\cdot)) \in \operatorname{Sol}(t,x(\cdot),s)$, define numbers $\lambda_g$ and $\lambda_H$ in accordance with assumptions (ii) and (iv), and take $m \in \mathbb{N}$ satisfying $m h_0 \geqslant T-t$. Set $\lambda_0=2\lambda_H(1+\lambda_g)^{m-1}/(3-\sqrt{5}\,)$ and fix $\varepsilon_0 \in (0,e^{-\lambda_0(T-t)})$. The Lyapunov–Krasovskii functional suitable for Theorem 1 has the following form:

$$ \begin{equation*} \nu_\varepsilon(\tau,y_1(\cdot),y_2(\cdot))= \frac{e^{-\lambda_0(\tau-t)}-\varepsilon}{\varepsilon} \sqrt{\varepsilon^4+ \gamma\bigl(\tau,w(\,\cdot\,;y_1(\cdot),y_2(\cdot))\bigr)}\,. \end{equation*} \notag $$
Here $\tau \in [t,T]$, $y_1(\cdot),y_2(\cdot) \in \operatorname{Lip}(t,x(\cdot))$, $\varepsilon \in (0,\varepsilon_0]$ is a parameter; $w(\xi; y_1(\cdot),y_2(\cdot))=0$ if $\xi \in [-h,t)$, and $w(\xi;y_1(\cdot),y_2(\cdot))=y_1(\xi)-g(\xi,y_1(\cdot))-y_2(\xi)+g(\xi,y_2(\cdot))$ if $\xi \in [t,T]$; the functional $\gamma \colon [0,T] \times \operatorname{Lip} \to \mathbb{R}$ is defined as follows (see, for instance, [5]):
$$ \begin{equation*} \gamma(\tau,w(\cdot))=\frac{\bigl(\|w(\,\cdot\,\wedge \tau)\|_\infty^2-\|w(\tau)\|^2\bigr)^2}{\|w(\,\cdot\,\wedge \tau)\|_\infty^2}+\|w(\tau)\|^2 \end{equation*} \notag $$
if $\|w(\,\cdot\,\wedge \tau)\|_\infty > 0$, and $\gamma(\tau,w(\cdot))=0$ if $\|w(\,\cdot\,\wedge \tau)\|_\infty=0$, where $(\tau,w(\cdot)) \in [0,T] \times \operatorname{Lip}$.


Bibliography

1. M. I. Gomoyunov and N. Yu. Lukoyanov, Russian Math. Surveys, 79:2(476) (2024), 229–324  mathnet  crossref  mathscinet
2. A. R. Plaksin, Differ. Equ., 55:11 (2019), 1475–1484  crossref  mathscinet  zmath
3. A. R. Plaksin, “On the minimax solution of the Hamilton–Jacobi equations for neutral-type systems: the case of an inhomogeneous Hamiltonian”, Differ. Equ., 57:11 (2021), 1516–1526  crossref  mathscinet  zmath
4. A. Plaksin, Appl. Math. Optim., 88:1 (2023), 6, 29 pp.  crossref  mathscinet  zmath
5. Jianjun Zhou, Automatica J. IFAC, 142 (2022), 110347, 15 pp.  crossref  mathscinet  zmath

Citation: M. I. Gomoyunov, N. Yu. Lukoyanov, “On the minimax solution of path-dependent Hamilton–Jacobi equations for neutral-type systems”, Russian Math. Surveys, 79:4 (2024), 733–735
Citation in format AMSBIB
\Bibitem{GomLuk24}
\by M.~I.~Gomoyunov, N.~Yu.~Lukoyanov
\paper On the minimax solution of path-dependent Hamilton--Jacobi equations for neutral-type systems
\jour Russian Math. Surveys
\yr 2024
\vol 79
\issue 4
\pages 733--735
\mathnet{http://mi.mathnet.ru//eng/rm10182}
\crossref{https://doi.org/10.4213/rm10182e}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85211383380}
Linking options:
  • https://www.mathnet.ru/eng/rm10182
  • https://doi.org/10.4213/rm10182e
  • https://www.mathnet.ru/eng/rm/v79/i4/p177
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:177
    Russian version PDF:9
    English version PDF:7
    Russian version HTML:18
    English version HTML:31
    References:18
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024