Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2024, Volume 79, Issue 3, Pages 550–552
DOI: https://doi.org/10.4213/rm10174e
(Mi rm10174)
 

Brief communications

On the adjacency of type $D$ singularities of a front

V. D. Sedykh

National State University of Oil and Gas "Gubkin University"
References:
Received: 01.04.2024
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian

We study the adjacencies of singularities of the front of a proper generic Legendrian map with simple stable singularities. For all necessary definitions and facts from the theory of Legendrian singularities, see [1], [4], and [5].

By Arnold’s theorem on Legendrian singularities, simple stable germs of Legendrian maps are numbered by the symbols $A_{\mu}$ ($\mu=1,2,\dots$), $D_{\mu}^\pm$ ($\mu=4,5,\dots$), $E_6$, $E_7$, and $E_8$ up to Legendrian equivalence. If $\mu$ is odd, then germs of types $D_{\mu}^{+}$ and $D_{\mu}^{-}$ are Legendrian equivalent. Their types are denoted by $D_{\mu}$.

Let us consider the unordered set of symbols that are the types of germs of a generic Legendrian map $f\colon L\to V$ at the preimages of a point $y\in V$. The formal commutative product $\mathcal{A}$ of these symbols is called the type of the multisingularity of the map $f$ at the point $y$ (or the type of the monosingularity if $y$ has only one preimage). If $f^{-1}(y)=\varnothing$, then $\mathcal{A}=\mathbf{1}$. The set $\mathcal{A}_f$ of points of $V$ at which $f$ has a multisingularity of type $\mathcal{A}$ is a smooth submanifold in the space $V$.

Assume that $f$ has a multisingularity of type $\mathcal{B}$ at a point $y$ lying in the closure of the manifold $\mathcal{A}_f$. From the paper [2] by Looijenga it follows that $y$ has a neighbourhood $O(y)\subset V$ such that its intersection with any connected component of the manifold $\mathcal{A}_f$ whose closure contains $y$ is contractible. The number of the connected components of the intersection $O(y)\cap\mathcal{A}_f$ depends only on $\mathcal{A}$ and $\mathcal{B}$, is denoted by $J_{\mathcal A}(\mathcal{B})$, and is called the adjacency index of a multisingularity of type $\mathcal{B}$ to a multisingularity of type $\mathcal{A}$. The index $J_{\bf 1}(\mathcal{B})$ is equal to the number of the connected components of the complement to the front of the map $f$ in $O(y)$.

The adjacency indices of multisingularities are calculated in terms of the adjacency indices of monosingularities (see [3], Proposition 2.5). The adjacency indices of monosingularities of types $A_\mu$ are calculated by the formula in Theorem 2.6 in [3]. The indices of all adjacencies of monosingularities of types $D_\mu^\pm$ and $E_\mu$ for $\mu\leqslant 6$ were listed in [3], Theorems 2.8 and 2.9. Vassiliev [6] calculated the indices $J_{\bf 1}(D_\mu^\pm)$ and $J_{\bf 1}(E_\mu)$ for the other $\mu$.

In the present paper we calculate the adjacency indices of monosingularities of types $D_\mu^\pm$ to multisingularities of types $D_\nu^\pm A_{\mu_1}^{k_1}\dots A_{\mu_p}^{k_p}$. Let

$$ \begin{equation*} f\colon\mathbb{R}^{n-1}\to \mathbb{R}^n,\quad (t,q)\mapsto (x,q,u),\quad x=-\frac{\partial S(t,q)}{\partial t}\,,\quad u=S(t,q)-t\,\frac{\partial S(t,q)}{\partial t}\,, \end{equation*} \notag $$
where $t=(t_1,\dots,t_m)$, $x=(x_1,\dots,x_m)$, $q=(q_{m+1},\dots,q_{n-1})$, and $S=S(t,q)$ is a smooth function of $t$ with parameter $q$. The map $f$ is Legendrian. If $m=1$ and $S$ is given by the formula $S=t_1^{\mu+1}+q_{\mu-1}t_1^{\mu-1}+\cdots+q_2t_1^2$, where $\mu\geqslant 1$, then the germ of $f$ at zero has type $A_\mu$.

Assume that $m=2$, $\delta=\pm1$ and $S=t_1^2t_2+\delta t_2^{\mu-1}+ q_{\mu-1}t_2^{\mu-2}+\cdots+q_3t_2^2$, $\mu\geqslant4$. Then $f$ has a singularity of type $D_\mu^\delta$ at zero ($D_\mu^+$ if $\delta=+1$, and $D_\mu^-$ if $\delta=-1$). Let

$$ \begin{equation*} H_i=H_i(t,q)=t_2^{i}\, \frac{\partial^{i+1}S}{\partial t_2^{i+1}}-(-1)^{i+1}(i+1)!\,t_1^2,\qquad i=1,\dots,\mu-1. \end{equation*} \notag $$

Lemma ([3], Lemma 5.1). The germ of the map $f$ at a point $(t,q)\ne 0$ has the following type: (1) $A_\nu$, $1\leqslant \nu\leqslant \mu-1$, if $H_1=\dots=H_{\nu-1}=0$, $H_\nu\ne 0$; (2) $A_3$ if $t_1=t_2=0$, $q_3\ne 0$; (3) $D_{\nu}^\pm$, $4\leqslant \nu\leqslant \mu-1$, if $t_1=t_2=q_3=\dots=q_{\nu-1}=0$ and $\pm q_\nu>0$.

It follows from the lemma that Legendrian monosingularities of types $D_\mu^\pm$ can only be adjacent to multisingularities of types $D_\nu^\pm A_{\mu_1}^{k_1}\dots A_{\mu_p}^{k_p}$ and $A_{\mu_1}^{k_1}\dots A_{\mu_p}^{k_p}$.

Theorem. Let $\mu>\nu\geqslant4$ be integers, and let $\mathcal{A}=A_{\alpha_1}^{i_1}\dots A_{\alpha_k}^{i_k}A_{\beta_1}^{j_1}\dots A_{\beta_l}^{j_l}$, where $\alpha_1,\dots,\alpha_k$ are pairwise distinct even numbers and $\beta_1,\dots,\beta_l$ are pairwise distinct odd numbers. Then the number $J_{D_\nu^{\pm\delta}\mathcal{A}}(D_\mu^\delta)$ is equal to

$$ \begin{equation*} \sum_{\substack{0\leqslant i_0\leqslant N\\ i_0\equiv N\, (\mathrm{mod}\, 2)}} \!\!\!\!\!\!\! \frac{(1+i_0+i_1+\dots+i_k+j_1+\dots+j_l)!} {(1+i_0+i_1+\dots+i_k)\,i_0!\,i_1!\dotsb i_k!\,j_1!\cdots j_l!} \!\biggl[\frac{3\pm1+2(i_0+i_1+\dotsb+i_k)}{4}\biggr]\!, \end{equation*} \notag $$
where $N=\mu-\nu-\sum_{p=1}^ki_p(\alpha_p+1)-\sum_{r=1}^lj_r(\beta_r+1)$ and $[\,\cdot\,]$ is the integer part of a number. If $\nu$ is odd, then
$$ \begin{equation*} J_{D_\nu\mathcal{A}}(D_\mu^\delta)= \sum_{\substack{0\leqslant i_0\leqslant N\\ i_0\equiv N\,(\mathrm{mod}\, 2)}} \frac{(1+i_0+i_1+\cdots+i_k+j_1+\cdots+j_l)!} {i_0!\,i_1!\cdots i_k!\,j_1!\cdots j_l!}\,. \end{equation*} \notag $$

Proof. By the lemma the map $f$ has a multisingularity of type $D_\nu^{\pm\delta}\mathcal{A}$ at a point $y=(x_1,x_2,q_3,\dots,q_{n-1},u)$ if and only if the following three conditions hold:

(1) $x_1=x_2=q_3=\cdots=q_{\nu-1}=u=0$, $\pm q_\nu/\delta>0$;

(2) if $(t_1,t_2,q_3,\dots,q_{n-1})$ is a preimage of the point $y$ under the map $f$, where $t_1^2+t_2^2\ne0$, then $t_1=0$ and $t_2$ is a multiple real root of the polynomial

$$ \begin{equation} t_2^{\mu-\nu}+\frac{q_{\mu-1}}{\delta}\,t_2^{\mu-\nu-1}+ \cdots+\frac{q_\nu}{\delta}\,; \end{equation} \tag{1} $$

(3) the polynomial (1) has $m_1=i_1+\cdots+i_k$ geometrically distinct real roots with odd multiplicity greater than $1$ and $m_2=j_1+\cdots+j_l$ geometrically distinct real roots with even multiplicity; namely it has $i_p$ real roots with odd multiplicity $\alpha_p+1$ for each $p=1,\dots,k$ and $j_r$ real roots with even multiplicity $\beta_r+1$ for each $r=1,\dots,l$.

Let $i_0$ be the number of simple real roots of the polynomial (1). Then $0\leqslant i_0\leqslant N$ and $i_0\equiv N$ ($\text{mod } 2)$. The number of positions of all real roots with odd multiplicity on the $t_2$-axis is equal to $C_1=(i_0+m_1)!/(i_0!\,i_1!\cdots i_k!)$. The position of zero on this axis can be chosen in $C_2=[(\varepsilon+i_0+m_1)/2]$ ways, where $\varepsilon=1$ if $q_\nu/\delta<0$ and $\varepsilon=2$ if $q_\nu/\delta>0$. Now, the number of possible locations of real roots with even multiplicity on the $t_2$-axis is equal to $C_3=(1+i_0+m_1+m_2)!/((1+i_0+m_1)!\,j_1!\dotsb j_l!)$.

The product of the numbers $C_1$, $C_2$ and $C_3$ is equal to the number of locations of all real roots of the polynomial (1). The number $J_{D_\nu^{\pm\delta}\mathcal{A}}(D_\mu^\delta)$ is equal to the sum of these products over all possible $i_0$. If $\nu$ is odd, then $J_{D_\nu\mathcal{A}}(D_\mu^\delta)= J_{D_\nu^{\delta}\mathcal{A}}(D_\mu^\delta)+ J_{D_\nu^{-\delta}\mathcal{A}}(D_\mu^\delta)$. $\Box$

Example. From the theorem we easily obtain the following formulae presented in [3], Theorem 2.8: $J_{D_4^\pm}(D_5)=1$, $J_{D_4^\delta}(D_6^\delta)=3$, $J_{D_4^{-\delta}}(D_6^\delta)=1$, $J_{D_4^\delta A_1}(D_6^\delta)=2$, and $J_{D_5}(D_6^\pm)=2$.


Bibliography

1. V. I. Arnold, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990, xiv+259 pp.  crossref  mathscinet  zmath
2. E. Looijenga, Compositio Math., 37:1 (1978), 51–62  mathscinet  zmath
3. V. D. Sedykh, Izv. Math., 76:2 (2012), 375–418  mathnet  crossref  mathscinet  zmath  adsnasa
4. V. D. Sedykh, Arnold Math. J., 7:2 (2021), 195–212  crossref  mathscinet  zmath
5. V. D. Sedykh, Mathematical methods of catastrophe theory, Moscow Center of Continuous Mathematical Education, Moscow, 2021, 224 pp. (Russian)
6. V. A. Vassiliev, Complements of discriminants of simple real function singularities, 2022 (v1 – 2021), 22 pp., arXiv: 2109.12287 (to appear in Israel J. Math.)

Citation: V. D. Sedykh, “On the adjacency of type $D$ singularities of a front”, Russian Math. Surveys, 79:3 (2024), 550–552
Citation in format AMSBIB
\Bibitem{Sed24}
\by V.~D.~Sedykh
\paper On the adjacency of type $D$ singularities of a front
\jour Russian Math. Surveys
\yr 2024
\vol 79
\issue 3
\pages 550--552
\mathnet{http://mi.mathnet.ru//eng/rm10174}
\crossref{https://doi.org/10.4213/rm10174e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4801218}
\zmath{https://zbmath.org/?q=an:07945468}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024RuMaS..79..550S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001347820700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85208990289}
Linking options:
  • https://www.mathnet.ru/eng/rm10174
  • https://doi.org/10.4213/rm10174e
  • https://www.mathnet.ru/eng/rm/v79/i3/p183
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024