Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 6, Pages 1155–1157
DOI: https://doi.org/10.4213/rm10156e
(Mi rm10156)
 

Brief communications

Gaussian multiplicative chaos for the sine-process

A. I. Bufetovabcd

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
c Saint Petersburg State University
d CNRS, Institut de Mathématiques de Marseille, Marseille, France
References:
Received: 17.11.2023
Russian version:
Uspekhi Matematicheskikh Nauk, 2023, Volume 78, Issue 6(474), Pages 179–180
DOI: https://doi.org/10.4213/rm10156
Bibliographic databases:
Document Type: Article
MSC: 60G15, 60G55, 60G60
Language: English
Original paper language: Russian

Let the symbol $\mathsf{P}_{\mathcal S}$ denote the sine-process, the determinantal measure on the space $\operatorname{Conf}(\mathbb{R})$ of locally finite configurations on $\mathbb{R}$ that is induced by the kernel

$$ \begin{equation*} {\mathcal S}(x,y)=\frac{\sin\pi(x-y)}{\pi(x-y)}\,. \end{equation*} \notag $$
For any $z,w\in\mathbb{C}\setminus\mathbb{R}$ we introduce a multiplicative functional by the formula
$$ \begin{equation*} G_X(z,w)=\prod_{x\in X}^{\mathrm{v.p.}}\biggl(\frac{z-x}{w-x}\biggr),\qquad x\in X. \end{equation*} \notag $$
Furthermore, let $M_\gamma$ be the exponential of the Gaussian random field on $[0,1]$ with covariance kernel $K_\gamma(s,t)=-2\gamma^2\log|s-t|$ (see [7], [9], and [10]).

Theorem. For $\gamma\in(0,1)$ the random measure

$$ \begin{equation} \frac{|G_X(i+Rt,Ri)|^{2\gamma}\,dt} {\mathsf{E}_{\mathsf{P}_{\mathcal S}}|G_X(i+Rt,Ri)|^{2\gamma}}\,,\qquad t\in [0,1], \end{equation} \tag{1} $$
converges in distribution to $M_{\gamma}$ as $R\to\infty$.

In other words, the distribution of the random measure (1) in the space of probability measures on the space of finite Borel measures on $[0, 1]$ converges weakly to the distribution of the random measure $M_{\gamma}$. Let $\mathcal{PW}=\{f\in L_2(\mathbb{R})\colon \operatorname{supp}\hat f\subset [-\pi,\pi]\}$.

Corollary. For $\mathsf{P}_{\mathcal S}$-almost every configuration $X\in\operatorname{Conf}(\mathbb{R})$ and any $p\in X$ the conditions $f\in\mathcal{PW}$ and $f\big|_{X\setminus p}=0$ imply that $f=0$.

The set $X\setminus p$ is therefore complete for the Paley–Wiener space. The completeness of $X$ itself was established by Gosh [5] (see also [8] for the discrete case and [3] for the general case). On the other hand the following statement holds.

Proposition. For $\mathsf{P}_{\mathcal S}$-almost every configuration $X\in\operatorname{Conf}(\mathbb{R})$ and any distinct $p,q\in X$ there exists a non-trivial function $f\in\mathcal{PW}$ such that $f\big|_{X\setminus\{p,q\}}=0$.

We conclude that the set $X\setminus p$ is both complete and minimal for the Paley-Wiener space $\mathcal{PW}$.

Consider a Gaussian random process $Y_{zw}$, indexed by points $z$ and $w$ in the upper half-plane $\mathbb{C}_+=\{z\in\mathbb{C}\colon\operatorname{Im} z>0\}$, that is specified by the following conditions:

$$ \begin{equation*} \begin{gathered} \, Y_{zw}+Y_{wu}+Y_{uz}=0,\quad \mathsf{E}Y_{zw}=0,\\ \text{and}\quad \operatorname{Var}Y_{zw}=\log\biggl(1+\frac{|z-w|^2}{4\operatorname{Im} z\operatorname{Im} w}\biggr),\quad u,z,w\in\mathbb{C}_+. \end{gathered} \end{equation*} \notag $$

By the Soshnikov central limit theorem [11] (see also [6]) the random variables $\log|G_X(z/R,w/R)|$ converge in distribution to the Gaussian random process $Y_{zw}$ as $R\to\infty$. This convergence is uniform for $z$ and $ w$ ranging over compact subsets of the upper half-plane.

It is natural to consider $Y_{zw}$ as a process indexed by pairs of points in the Lobachevskii plane. Indeed, the joint distributions of the random variables we have introduced remain invariant under the group of Lobachevskian isometries. If $z$ is fixed and $w$ approaches the absolute, then the random process $Y_{zw}$ converges to the Gaussian random field with logarithmic correlations.

In order to prove the convergence of the random measures (1) we employ the scaling limit of the Borodin–Okounkov–Geronimo–Case formula [1], [2], [4] that we now formulate. Take any $f\in L_\infty(\mathbb R)$ satisfying the following conditions

$$ \begin{equation*} \|f\|^2_{\dot H_{1/2}}=\iint_{\mathbb{R}^2} \biggl|\frac{f(x)-f(y)}{x-y}\biggr|^2\,dx\,dy<\infty\quad\text{and}\quad \mathrm{(v.p.)}\int_{-\infty}^{+\infty}f(x)\,dx=0. \end{equation*} \notag $$
Represent $f$ as a sum $f=f_++f_-$, where $\operatorname{supp} \widehat{f_+}\subset [0,+\infty)$ and $\operatorname{supp} \widehat{f_-}\subset (-\infty,0]$. Then
$$ \begin{equation*} \det(1+(e^f-1){\mathcal S})=\exp\biggl\{ \frac{1}{4\pi^2}\|f\|^2_{\dot H_{1/2}}\biggr\}\cdot \det\bigl(1-\mathbf{1}_{(1,+\infty)}\mathfrak{H}(h_{-+}) \mathfrak{H}(\widetilde{h_{+-}})\mathbf{1}_{(1,+\infty)}\bigr), \end{equation*} \notag $$
where $\widehat{\widetilde{h}}(\lambda)=\widehat{h}(-\lambda)$,
$$ \begin{equation*} h_{-+}=\exp\biggl\{f_-\biggl(\frac{\cdot}{2\pi}\biggr)- f_+\biggl(\frac{\cdot}{2\pi}\biggr)\biggr\},\qquad h_{+-}=\exp\biggl\{f_+\biggl(\frac{\cdot}{2\pi}\biggr)- f_-\biggl(\frac{\cdot}{2\pi}\biggr)\biggr\}, \end{equation*} \notag $$
and $\mathfrak{H}(h)$ denotes the Hankel operator acting by the formula
$$ \begin{equation*} \mathfrak{H}(h)\varphi(s)= \frac{1}{2\pi}\int_0^{+\infty}\widehat{h}(s+t)\varphi(t)\,dt. \end{equation*} \notag $$


Bibliography

1. A. Borodin and A. Okounkov, Integral Equations Operator Theory, 37:4 (2000), 386–396  crossref  mathscinet  zmath
2. A. I. Bufetov, The sine-process has excess one, 2019, 57 pp., arXiv: 1912.13454
3. A. I. Bufetov, Yanqi Qiu, and A. Shamov, J. Eur. Math. Soc. (JEMS), 23:5 (2021), 1477–1519  crossref  mathscinet  zmath
4. J. S. Geronimo and K. M. Case, J. Math. Phys., 20:2 (1979), 299–310  crossref  mathscinet  zmath  adsnasa
5. S. Ghosh, Probab. Theory Related Fields, 163:3-4 (2015), 643–665  crossref  mathscinet  zmath
6. K. Johansson, Ann. of Math. (2), 145:3 (1997), 519–545  crossref  mathscinet  zmath
7. J.-P. Kahane, Ann. Sci. Math. Québec, 9:2 (1985), 105–150  mathscinet  zmath; 10:2 (1986), 117–118  mathscinet  zmath
8. R. Lyons, Publ. Math. Inst. Hautes Études Sci., 98 (2003), 167–212  crossref  mathscinet  zmath
9. R. Rhodes and V. Vargas, Probab. Surv., 11 (2014), 315–392  crossref  mathscinet  zmath
10. A. Shamov, J. Funct. Anal., 270:9 (2016), 3224–3261  crossref  mathscinet  zmath
11. A. Soshnikov, Russian Math. Surveys, 55:5 (2000), 923–975  mathnet  crossref  mathscinet  zmath  adsnasa

Citation: A. I. Bufetov, “Gaussian multiplicative chaos for the sine-process”, Uspekhi Mat. Nauk, 78:6(474) (2023), 179–180; Russian Math. Surveys, 78:6 (2023), 1155–1157
Citation in format AMSBIB
\Bibitem{Buf23}
\by A.~I.~Bufetov
\paper Gaussian multiplicative chaos for the sine-process
\jour Uspekhi Mat. Nauk
\yr 2023
\vol 78
\issue 6(474)
\pages 179--180
\mathnet{http://mi.mathnet.ru/rm10156}
\crossref{https://doi.org/10.4213/rm10156}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4723260}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78.1155B}
\transl
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 6
\pages 1155--1157
\crossref{https://doi.org/10.4213/rm10156e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001202852000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85190287476}
Linking options:
  • https://www.mathnet.ru/eng/rm10156
  • https://doi.org/10.4213/rm10156e
  • https://www.mathnet.ru/eng/rm/v78/i6/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:277
    Russian version PDF:9
    English version PDF:35
    Russian version HTML:44
    English version HTML:113
    References:35
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024