Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 6, Pages 1164–1166
DOI: https://doi.org/10.4213/rm10152e
(Mi rm10152)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Domain of univalence for the class of holomorphic self-maps of a disc with two fixed boundary points

O. S. Kudryavtsevaab, A. P. Solodova

a Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics
b Volgograd State Technical University
References:
Funding agency Grant number
Russian Science Foundation 21-11-00131
This research was carried out at Lomonosov Moscow State University and supported by the Russian Science Foundation under grant no. 21-11-00131.
Received: 22.09.2023
Bibliographic databases:
Document Type: Article
MSC: 30C55
Language: English
Original paper language: Russian

Let $\mathscr B$ be the set of holomorphic self-maps of the unit disc $\mathbb D=\{z\in \mathbb C\colon |z|<1\}$. Fixed points of functions $f$ in $\mathscr B$ are of importance for their investigation. An interior point $a\in\mathbb D$ is a fixed point of $f\in \mathscr B$ if $f(a)=a$. A boundary point $a\in \mathbb T$, $\mathbb T=\{z\in \mathbb C\colon |z|=1\}$ is called a fixed point of $f\in \mathscr B$ if $\angle \lim_{z\to a}f(z)=a$. In the latter case a finite or an infinite angular limit $f'(a)=\angle \lim_{z\to a}(f(z)-a)/(z-a)$ exists, which is called the angular derivative of $f$ at $a$; when this quantity is finite, it is positive. The set of all fixed points of a function $f\in \mathscr B$ is non-empty. Furthermore, if $f$ is not linear fractional, then there exists a fixed point with the attraction property, which is, moreover, unique. It is usually called the Denjoy–Wolff point of $f$ (see [1], Chap. VI, § 43, for details). The Denjoy–Wolff point can lie in the interior of $\mathbb D$ (and then $|f'(q)|\leqslant 1$) or on the boundary $\mathbb T$ (and then $0<f'(q)\leqslant 1$). The other fixed points (if any) lie on $\mathbb T$ and are repelling.

Let $\mathscr B[q]$, $q\in \overline{\mathbb D}$, denote the set of functions $f$ in $\mathscr B$ such that $q$ is their Denjoy–Wolff point. If $f\in \mathscr B[q]$, $q\in {\mathbb D}$, and $f'(q)\neq 0$, then $f$ is univalent in a neighbourhood of $q$. It turns out that the size of this neighbourhood can be chosen in dependence on the value of $f'(q)$ alone. For example, if $q=0$ and $|f'(0)|=\beta$, $\beta\in(0,1)$, then $f$ is univalent in the disc $\{z\in \mathbb D\colon |z|<\beta/(1+\sqrt{1-\beta^2}\,)\}$ (see [2]).

Let $\mathscr B\{1\}$ denote the set of functions $f$ in $\mathscr B$ with the fixed boundary point $a=1$: $\mathscr B\{1\}= \{f\in \mathscr B\colon \angle\lim_{z\to 1}f(z)=1\}$. Valiron [1] showed that if $f\in \mathscr B\{1\}$ and $f'(1)<+\infty$, then $f$ is univalent in a sector with vertex $1$ of opening arbitrarily close to $\pi$, whose radius depends on the opening and the function itself. Becker and Pommerenke [3] managed to estimate the size of this sector: in dependence of the function itself, they found a domain of univalence for it which contains all sectors indicated by Valiron.

Given some $\alpha>1$, in the class $\mathscr B\{1\}$ we can distinguish the subclass $\mathscr B_{\alpha}\{1\}$ of functions subject to a constraint on the value of the angular derivative at the fixed point: $\mathscr B_{\alpha}\{1\}=\bigl\{f\in \mathscr B\{1\}\colon f'(1)\leqslant \alpha \bigr\}$. It was shown in [4] that for no $\alpha>1$ does there exist a non-empty univalence domain for the whole of the class $\mathscr B_{\alpha}\{1\}$. Thus, by contrast to an interior fixed point, the class $\mathscr B_{\alpha}\{1\}$ is too wide from the standpoint of the search for domains of univalence, and we must look at more narrow classes to achieve progress in this problem. Since, apart from the repelling fixed point $a=1$, each function in $\mathscr B_{\alpha}\{1\}$ must also have an attracting (Denjoy–Wolff) fixed point, the class $\mathscr B_{\alpha}\{1\}$ can naturally be represented as the union of disjoint subclasses distinguished by the position of the Denjoy–Wolff point (which can lie in the interior or on the boundary of $\mathbb D$): $\mathscr B_{\alpha}\{1\}= \bigcup_{q\in\overline{\mathbb D}}\mathscr B_{\alpha}[q,1]$, where $\mathscr B_{\alpha}[q,1]=\mathscr B_{\alpha}\{1\}\cap \mathscr B[q]$.

That for some values of $\alpha$ the above subclasses of $\mathscr B_{\alpha}\{1\}$ possess domains of univalence was shown in [5]. Now, to have simpler statements we set $q=0$ (in the case of an interior Denjoy–Wolff point) or $q=-1$ (in the case of a boundary Denjoy–Wolff point).

For $\alpha\in(1,4]$ the sharp domain of univalence for the class $\mathscr B_{\alpha}[0,1]$ was found in [6]: $\{z\in \mathbb D\colon |1-2z+|z|^2|\,({1-|z|^2})^{-1}< (\alpha-1)^{-1/2}\}$. In [7] an upper estimate was obtained for a domain of univalence for $\mathscr B_{\alpha}[-1,1]$. It turns out that for $\alpha\in (1,4]$ this estimate is sharp.

Theorem 1. Let $\alpha\in (1,4]$. If $f\in \mathscr B_{\alpha}[-1,1]$, then $f$ is univalent in the domain $\mathscr U(\alpha)=\{z\in \mathbb D\colon |1-z^2|\,(1-|z|^2)^{-1}< \alpha^{1/2}(\alpha-1)^{-1/2}\}$. For any domain $\mathscr{V}$, $\mathscr U(\alpha)\subset \mathscr{V}\subset\mathbb D$, $\mathscr{V}\ne \mathscr U(\alpha)$, there exists a function $f\in \mathscr B_{\alpha}[-1,1]$ that is not univalent in $\mathscr{V}$.

This gives a complete answer to the question of a sharp domain of univalence for the subclasses $\mathscr B_{\alpha}\{1\}$, $\alpha\in(1,4]$, when the position of the Denjoy–Wolff point is fixed.

The proof of Theorem 1 is based on a refinement of an inequality due to Becker and Pommerenke [3], which implies that the quantities

$$ \begin{equation*} f'(1)\,\frac{1-|c|^2}{|1-c|^2}-\frac{1-|a|^2}{|1-a|^2}- \frac{1-|b|^2}{|1-b|^2} \quad \text{and}\quad \frac{1-|c|^2}{|1+c|^2}-\frac{1-|a|^2}{|1+a|^2}-\frac{1-|b|^2}{|1+b|^2} \end{equation*} \notag $$
are non-negative, provided that the function $f$ belongs to $ \mathscr B[-1,1]$, where $\mathscr B[-1,1]=\mathscr B\{1\}\cap \mathscr B[-1]$, and takes two different points $a$ and $b$ to $c$. In fact, a stronger result holds.

Lemma 1. If $f\in\mathscr B[-1,1]$ and $a,b\in \mathbb D$, $a\ne b$, are points such that $f(a)=f(b)= c$, then

$$ \begin{equation*} \begin{aligned} \, &4\biggl(f'(1)\,\frac{1-|c|^2}{|1-c|^2}-\frac{1-|a|^2}{|1-a|^2}- \frac{1-|b|^2}{|1-b|^2}\biggr)\biggl(\frac{1-|c|^2}{|1+c|^2}- \frac{1-|a|^2}{|1+a|^2}-\frac{1-|b|^2}{|1+b|^2}\biggr) \\ &\qquad\geqslant \biggl|1+\frac{1-\overline{c}}{1-c}\, \frac{1+c}{1+\overline{c}}\,\frac{1-a}{1-\overline{a}}\, \frac{1+\overline{a}}{1+a}\,\frac{1-b}{1-\overline{b}}\, \frac{1+\overline{b}}{1+b}\biggr|^2. \end{aligned} \end{equation*} \notag $$

On the other hand we can show that a kind of a reverse inequality holds.

Lemma 2. Let $\alpha\in (1,4]$. Then for any points $a,b\in \mathscr U(\alpha)$ and $c\in \mathbb D$

$$ \begin{equation*} \begin{aligned} \, &4\biggl(\alpha\,\frac{1-|c|^2}{|1-c|^2}-\frac{1-|a|^2}{|1-a|^2}- \frac{1-|b|^2}{|1-b|^2}\biggr)\biggl(\frac{1-|c|^2}{|1+c|^2}- \frac{1-|a|^2}{|1+a|^2}-\frac{1-|b|^2}{|1+b|^2}\biggr) \\ &\qquad<\biggl|1+\frac{1-\overline{c}}{1-c}\,\frac{1+c}{1+\overline{c}}\, \frac{1-a}{1-\overline{a}}\,\frac{1+\overline{a}}{1+a}\, \frac{1-b}{1-\overline{b}}\,\frac{1+\overline{b}}{1+b}\biggr|^2. \end{aligned} \end{equation*} \notag $$

Supposing that a function $f\in\mathscr B_\alpha[-1,1]$ is not univalent in the domain $\mathscr U(\alpha)$, taking Lemmas 1 and 2 into account we arrive at a contradiction.


Bibliography

1. G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954, 236 pp.  mathscinet  zmath
2. E. Landau, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926, 467–474  zmath
3. J. Becker and Ch. Pommerenke, Comput. Methods Funct. Theory, 17:3 (2017), 487–497  crossref  mathscinet  zmath
4. O. S. Kudryavtseva and A. P. Solodov, Sb. Math., 210:7 (2019), 1019–1042  mathnet  crossref  mathscinet  zmath  adsnasa
5. V. V. Goryainov, Sb. Math., 208:3 (2017), 360–376  mathnet  crossref  mathscinet  zmath  adsnasa
6. A. P. Solodov, Izv. Math., 85:5 (2021), 1008–1035  mathnet  crossref  mathscinet  zmath  adsnasa
7. V. V. Goryainov, O. S. Kudryavtseva, and A. P. Solodov, Dokl. Math., 108:1 (2023), 326–330  mathnet  crossref

Citation: O. S. Kudryavtseva, A. P. Solodov, “Domain of univalence for the class of holomorphic self-maps of a disc with two fixed boundary points”, Russian Math. Surveys, 78:6 (2023), 1164–1166
Citation in format AMSBIB
\Bibitem{KudSol23}
\by O.~S.~Kudryavtseva, A.~P.~Solodov
\paper Domain of univalence for the class of holomorphic self-maps of a disc with two fixed boundary points
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 6
\pages 1164--1166
\mathnet{http://mi.mathnet.ru//eng/rm10152}
\crossref{https://doi.org/10.4213/rm10152e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4723263}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78.1164K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001202852000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85190309924}
Linking options:
  • https://www.mathnet.ru/eng/rm10152
  • https://doi.org/10.4213/rm10152e
  • https://www.mathnet.ru/eng/rm/v78/i6/p185
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:242
    Russian version PDF:10
    English version PDF:35
    Russian version HTML:18
    English version HTML:127
    References:28
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024