Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2024, Volume 79, Issue 1, Pages 179–181
DOI: https://doi.org/10.4213/rm10149e
(Mi rm10149)
 

Brief communications

Bitopological models of intuitionistic epistemic logic

A. A. Onoprienko

HSE University
References:
Received: 20.09.2023
Bibliographic databases:
Document Type: Article
MSC: 0360
Language: English
Original paper language: Russian

We consider the logic $\mathrm{H4}$, which is an extension of the intuistionistic propositional logic by a modality $\nabla$ satisfying the following schemes of axioms: $(1^{\nabla})$ $\alpha\to\nabla\alpha$; $(2^{\nabla})$ $\nabla\nabla\alpha\to\nabla\alpha$; $(3^{\nabla})$ $\nabla\bot\to\bot$; $(4^{\nabla})$ $\nabla(\alpha\to\beta)\to(\nabla\alpha\to\nabla\beta)$.

Artemov and Protopopescu [1], [2] investigated the intuistionistic epistemic logic with knowledge modality and constructed three formal systems $\mathrm{IEL}^-$, $\mathrm{IEL}$, and $\mathrm{IEL}^+$, the last of which coincides with $\mathrm{H4}$. The logic without axiom $(3^{\nabla})$ was earlier considered by Goldblatt [6], Dragalin [4], and Fairtlough and Mendler [5]. The intiuonistic logic extended by axioms $(1^{\nabla})$, $(2^{\nabla})$, and $(4^{\nabla})$ appeared apparently for the first time in Curry’s book [3]. Macnab [8] considered models of intuitionistic logic with axioms $(1^{\nabla})$, $(2^{\nabla})$, and $(4^{\nabla})$, which were based on fixing a topological space and a distinguished subset of it. The logic $\mathrm{H4}$ is obtained by adding axiom $(3^{\nabla})$, which corresponds precisely to the assumption that the distinguished subset is dense.

Melikhov [10] introduced the joint logic of problems and propositions $\mathrm{QHC}$, which is a conservative extension of the predicate version of $\mathrm{H4}$ [12]. The topological semantics of $\mathrm{QHC}$ gives rise to the following topological semantics of $\mathrm{H4}$ [7], [11]. Let $(X,\tau)$ be some non-empty topological space and $A$ be a dense subset of it. Propositional variables are interpreted as arbitrary open subsets $|\alpha|\subseteq X$. Boolean operators are interpreted in the standard way [13], and $\nabla\varphi$ is understood as $|\nabla\varphi|=X\setminus\operatorname{Cl}(A\setminus|\varphi|)$. It was proved in [7] and [11] that a formula is deducible in $\mathrm{H4}$ if and only if it is true in each topological model.

In this note we generalize the semantics of $\mathrm{H4}$ to the more general class of bitopological models. Massas [9] considered bitopological spaces satisfying $\tau_1\subseteq\tau_2$ as the semantics of the intuitionistics logic.

Let $X$ be a non-empty set endowed with two topologies $\tau_1$ and $\tau_2$ such that $\tau_1\subseteq\tau_2$. Let $\operatorname{Int}_i$ and $\operatorname{Cl}_i$ denote the operators of taking the interior and taking the closure in the topology $\tau_i$. Propositional variables are interpreted as open sets in $\tau_1$. Boolean operators are interpreted in the standard way on the topological space $(X,\tau_1)$, while $\nabla\varphi$ is defined by $|\nabla\varphi|=\operatorname{Int}_1\operatorname{Cl}_2|\varphi|$.

Theorem (soundness and completeness). A formula $\varphi$ is deducible in the logic $\mathrm{H4}$ if and only if it is true in each bitopological model of $\mathrm{H4}$.

Proof. We start with soundness. It was shown in [9] that $\operatorname{Int}_1\operatorname{Cl}_2$ is a nucleus on the Heyting algebra of sets open in $\tau_1$, that is, it has the following properties (where $U_1,U_2,U\in\tau_1$): $U_1\subseteq U_2\Rightarrow \operatorname{Int}_1\operatorname{Cl}_2U_1\subseteq \operatorname{Int}_1\operatorname{Cl}_2U_2$; $U\subseteq\operatorname{Int}_1\operatorname{Cl}_2U$; $\operatorname{Int}_1\operatorname{Cl}_2U=\operatorname{Int}_1 \operatorname{Cl}_2\operatorname{Int}_1\operatorname{Cl}_2U$; $\operatorname{Int}_1\operatorname{Cl}_2(U_1\cap U_2)= \operatorname{Int}_1\operatorname{Cl}_2U_1\cap \operatorname{Int}_1\operatorname{Cl}_2U_2$. This yields the validity of axioms $(1^{\nabla})$, $(2^{\nabla})$, and $(4^{\nabla})$ of $\mathrm{H4}$ in bitopological models. The validity of axiom $(3^{\nabla})$ can be verified directly since $\operatorname{Int}_1\operatorname{Cl}_2\varnothing=\varnothing$.

Now we prove completeness. Consider a topological model $(X,\tau)$ of $\mathrm{H4}$ with dense subset $A$ which is a counter model for the formula $\varphi$. Set $\tau_1=\tau$, and assume that the topology $\tau_2$ has the basis $\tau\cup\mathcal P(A)$, where $\mathcal P(A)$ is the set of subsets of $A$. Clearly, $\tau_1\subseteq\tau_2$. Note that for each set $M\subseteq X$ we have $\operatorname{Cl}_2(M)=\operatorname{Cl}_1(M)\setminus(A\setminus M)$ because subsets closed in $\tau_2$ can be represented as $C\setminus B$, where $C$ is closed in $\tau_1$ and $B\subseteq A$.

We interpret all propositional variables just as in the model $(X,\tau,A)$. We claim that then all formulae have the same interpretation in the models $(X,\tau,A)$ and $(X,\tau_1,\tau_2)$. It is sufficient to consider the case of the induction step using the modality $\nabla$, that is, to prove the equality $X\setminus\operatorname{Cl}_1(A\setminus U)= \operatorname{Int}_1\operatorname{Cl}_2U$ for all $U\in\tau_1$.

We show that $X\setminus\operatorname{Cl}_1(A\setminus U)\subseteq \operatorname{Int}_1\operatorname{Cl}_2U$. We use the equality $X\setminus\operatorname{Cl}_1(A\setminus U)= \bigcup\{V\in\tau_1\mid V\cap A\subseteq U\}$. Consider any $V\in\tau_1$ such that $V\cap A\subseteq U$. Then, as $A$ is dense, we have $V\subseteq\operatorname{Cl}_1(U)$. From $V\cap(A\setminus U)=\varnothing$ we obtain $V\subseteq\operatorname{Cl}_2(U)= \operatorname{Cl}_1(U)\setminus(A\setminus U)$. Hence, since $V\in\tau_1$, it follows that $V\subseteq\operatorname{Int}_1\operatorname{Cl}_2(U)$, which completes the proof of the inclusion.

Now let $V\in\tau_1$ be a set such that $V\subseteq\operatorname{Int}_1\operatorname{Cl}_2M$; then ${V\subseteq\operatorname{Cl}_2U}$. Again, since $A$ is dense, we have $V\cap A\subseteq U$, so that $U\subseteq X\setminus\operatorname{Cl}_1(A\setminus U)$.

Now, as all formulae preserve their interpretation, $(X,\tau_1,\tau_2)$ is a counter model for $\varphi$. The proof is complete.

Axiom $(3^{\nabla})$ corresponds to the density property of the nucleus. By considering Lindenbaum algebras it is easy to see that the logic $\mathrm{H4}$ is complete with respect to the algebraic semantics based on Heyting algebras with dense nuclei. Thus we have shown that $\mathrm{H4}$ is complete with respect to dense nuclei of particular form on the Heyting algebras of open subsets of a topological space.

Remark. The formulae $\alpha\to\nabla\alpha$ and $\nabla\alpha\to\neg\neg\alpha$ are deducible in $\mathrm{H4}$ (the first is axiom $(1^{\nabla})$, while the second was deduced in [1] and [2]). Consider two extreme cases. If $\tau_2$ is a discrete topology, then $\nabla\alpha\leftrightarrow\alpha$ in such a model. On the other hand, if $\tau_2=\tau_1$, then $\nabla\alpha\leftrightarrow\neg\neg\alpha$ in such a model. The logic $\mathrm{H4}$ has a Kripke-type semantics with a set $\mathrm{Aud}$ of audit worlds [1], [12]. The case of discrete topology $\tau_2$ is obtained by taking $A=X$ in the topological model or $\mathrm{Aud}=W$ in the Kripke model (and considering the relevant Alexandroff topology). The case $\tau_2=\tau_1$ is obtained by taking the set of leaves of a finite Kripke model as $\mathrm{Aud}$.

The author is grateful to L. D. Beklemishev and S. A. Melikhov for fruitful discussions and for their interest in this work.


Bibliography

1. S. Artemov and T. Protopopescu, Intuitionistic epistemic logic, vers. 2, 2014, 41 pp., arXiv: 1406.1582v2
2. S. Artemov and T. Protopopescu, Rev. Symb. Log., 9:2 (2016), 266–298  crossref  mathscinet  zmath
3. H. B. Curry, A theory of formal deducibility, Notre Dame Math. Lectures, 6, Univ. Notre Dame, Notre Dame, IN, 1950, ix+126 pp.  mathscinet  zmath
4. A. G. Dragalin, Mathematical intuitionism. Introduction to proof theory, Transl. Math. Monogr., 67, Amer. Math. Soc., Providence, RI, 1988, x+228 pp.  crossref  mathscinet  zmath
5. M. Fairtlough and M. Mendler, Inform. and Comput., 137:1 (1997), 1–33  crossref  mathscinet  zmath
6. R. I. Goldblatt, Z. Math. Logik Grundlagen Math., 27:31-35 (1981), 495–529  crossref  mathscinet  zmath
7. V. N. Krupskii, Tenth Smirnov Readings (Moscow 2017), Sovremennye Tetradi, Moscow, 2017, 30–31
8. D. S. Macnab, Algebra Universalis, 12:1 (1981), 5–29  crossref  mathscinet  zmath
9. G. Massas, Possibility spaces, Q-completions and Rasiowa–Sikorski lemmas for non-classical logics, MSc in Logic thesis, ILLC, Amsterdam, 2016, 122 pp. https://eprints.illc.uva.nl/id/eprint/1522/1/MoL-2016-23.text.pdf
10. S. A. Melikhov, A Galois connection between classical and intuitionistic logics, I. Syntax 1312.2575, 2022 (v1 – 2013), 47 pp.; II. Semantics, 2022 (v1 – 2015), 40 pp., arXiv: 1504.03379
11. A. A. Onoprienko, Moscow Univ. Math. Bull., 77:5 (2022), 236–241  mathnet  crossref  mathscinet  zmath
12. A. A. Onoprienko, “The predicate version of the joint logic of problems and propositions”, Sb. Math., 213:7 (2022), 981–1003  mathnet  crossref  mathscinet  zmath  adsnasa
13. H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Monogr. Mat., 41, Państwowe Wydawnictwo Naukowe, Warsaw, 1963, 522 pp.  mathscinet  zmath

Citation: A. A. Onoprienko, “Bitopological models of intuitionistic epistemic logic”, Russian Math. Surveys, 79:1 (2024), 179–181
Citation in format AMSBIB
\Bibitem{Ono24}
\by A.~A.~Onoprienko
\paper Bitopological models of intuitionistic epistemic logic
\jour Russian Math. Surveys
\yr 2024
\vol 79
\issue 1
\pages 179--181
\mathnet{http://mi.mathnet.ru//eng/rm10149}
\crossref{https://doi.org/10.4213/rm10149e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4774058}
\zmath{https://zbmath.org/?q=an:07891396}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024RuMaS..79..179O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001292806100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85205991667}
Linking options:
  • https://www.mathnet.ru/eng/rm10149
  • https://doi.org/10.4213/rm10149e
  • https://www.mathnet.ru/eng/rm/v79/i1/p189
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:231
    Russian version PDF:9
    English version PDF:22
    Russian version HTML:14
    English version HTML:87
    References:27
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024