Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 5, Pages 961–963
DOI: https://doi.org/10.4213/rm10147e
(Mi rm10147)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Supercriticality conditions for branching walks in a random killing environment with a single reproduction centre

V. A. Kutsenkoa, S. A. Molchanovb, E. B. Yarovayaa

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b HSE University
References:
Funding agency Grant number
Russian Science Foundation 23-11-00375
This work was performed by V. A. Kutsenko and E. B. Yarovay at the Steklov Mathematical Institute of Russian Academy of Sciences and supported by the Russian Science Foundation under grant no. 23-11-00375, https://rscf.ru/en/project/23-11-00375/.
The idea of research belongs to S. A. Molchanov.
Received: 01.09.2023
Russian version:
Uspekhi Matematicheskikh Nauk, 2023, Volume 78, Issue 5(473), Pages 181–182
DOI: https://doi.org/10.4213/rm10147
Bibliographic databases:
Document Type: Article
MSC: Primary 60J80; Secondary 60K37
Language: English
Original paper language: Russian

A branching random walk on the one-dimensional lattice $\mathbb{Z}$ with continuous time is considered. A field of independent identically distributed random variables $\mathcal{M}=\{\mu(x,\cdot),x\in\mathbb{Z}\setminus\{0\}\}$ defined on some probability space $(\Omega,\mathcal{F},\mathsf{P})$ is defined on the lattice outside zero. It is assumed that each random variable $\mu(x,\cdot\,)$ takes values in the interval $[0,c]$, $c\geqslant0$, and has positive density on it. The field $\mathcal{M}$ forms a ‘random killing environment’ on $\mathbb{Z}$, which specifies the intensity of particle disappearance in the branching random walk. A realization of the field $\mathcal{M}$ is denoted by $\mathcal{M}(\omega)=\{\mu(x,\omega),x\in\mathbb{Z}\setminus\{0\}\}$, $\omega\in\Omega$. We introduce additionally a parameter $\Lambda\geqslant 0$ responsible for the intensity with which particles are reproduced at zero and a parameter $\varkappa>0$ which controls the intensity which which particles walk on the lattice.

Assume that there is a single particle on $\mathbb{Z}$ at the moment of time $t=0$. The further evolution proceeds as follows. If a particle is at zero, then, within time $h\to0$, it splits into two particles with probability $\Lambda h+o(h)$, moves with probability $\varkappa h+o(h)$ to one of the equiprobable adjacent points, or remains at its place with probability $1-\Lambda h-\varkappa h+o(h)$. If the particle is at a point $x\neq 0$, then, within time $h\to0$, it disappears with probability $\mu(x,\omega) h+o(h)$, moves with probability $\varkappa h+o(h)$ to one of the equiprobable adjacent points, or remains at its place with probability $1-\mu(x,\omega)-\varkappa h+o(h)$. New particles evolve independently of one another and of the whole prehistory, in accordance with the same law. The process of branching of particles at $x\in\mathbb{Z}$ is described by the potential $V(x,\omega):=\Lambda\delta_0(x)-\mu(x,\omega)(1-\delta_0(x))$, where $\delta_y(x)$ is the Kronecker delta.

The behaviour of the branching random walk at a moment of time $t$ is specified by the set of numbers of particles $N_{t}(y,\omega)$ at the points $y\in\mathbb{Z}$. Normally, the mean numbers of particles are considered [1], [2], namely, $m_1(t,x,y,\omega)=\mathsf{E}_{x} N_{t}(y,\omega)$, where $\mathsf{E}_{x}$ is the mean under the condition $N_0(y,\omega)=\delta_y(x)$. We are going to study the probability $P(\Lambda,\varkappa,c)$ of the realization of an environment in which the quantity $m_1(t,x,y,\omega)$ shows an exponential growth (supercriticality) for fixed $\Lambda$, $\varkappa$, and $c$. Formally, we have

$$ \begin{equation*} P(\Lambda,\varkappa,c)=\mathsf{P}\biggl\{\omega\in\Omega\colon\lim_{t\to\infty} \frac{m_1(t,x,y,\omega)}{C(x,y)e^{\lambda(\omega) t}}=1\ \forall\, x,y \in\mathbb{Z}\biggr\}, \end{equation*} \notag $$
where the functions $C$, $\lambda$, and $m_1$ are positive and depend additionally on $\Lambda$, $\varkappa$, and $c$.

This study is aimed at estimating $P(\Lambda,\varkappa,c)$ as a function of $\Lambda,\varkappa$, and $c$. We use the approach described, for example, in [2] and [3] and write the Cauchy problem for $m_1(t,x,y,\omega)$ as follows: $\partial m_1(t,x,y,\omega)/\partial t=(\varkappa\Delta m_1)(t,x,y,\omega)+V(x,\omega)m_1(t,x,y,\omega)$ with the initial condition $m_1(0,x,y,\omega)=\delta_y(x)$, where $\varkappa\Delta f(x)=\varkappa[f(x+1)/2+f(x-1)/2-f(x)]$ is the difference Laplacian on $\mathbb{Z}$. Throughout, all operators are defined on $l_2(\mathbb{Z})$. Introducing the random self-adjoint operator $H(\omega)=\varkappa\Delta+V(x,\omega)$, we can represent the above Cauchy problem in the form $\partial m_1(t,x, y, \omega)/\partial t= H(\omega)m_1(t,x,y,\omega)$, $m_1(0,x,y,\omega)=\delta_y(x)$. The behaviour of $m_1$ in problems of this kind depends on the structure of the spectrum of the operator $H(\omega)$.

Lemma 1. The spectrum of $H(\omega)$ consists almost surely of the non-random essential part $[-2\varkappa-c;0]$ and also maybe a random eigenvalue $\lambda(\Lambda,\varkappa,c,\omega)>0$.

The proof follows the scheme of reasoning in [4]. In particular, for each $\lambda_0\in[-2\varkappa-c;0]$ and almost any realization of the environment $\omega_0\in\Omega$, we manage to construct a sequence of orthonormal functions $\{f_i(x,\lambda_0,\omega_0)\}\in l_2(\mathbb{Z})$, $i\in\mathbb{N}$, such that $\|H(\omega)f_n-\lambda_0f_n\|\to0$ as $n\to\infty$. It follows that any $\lambda_0\in[-2\varkappa-c;0]$ is almost surely in the essential spectrum. The random eigenvalue $\lambda(\Lambda,\varkappa,c,\omega)$ can appear due to a one-point perturbation of the self-adjoint operator at zero.

The following lemma provides an explicit form of the eigenfunction $u_\lambda(x)$ corresponding to $\lambda>0$. This assertion is proved by substituting the expression for $u_\lambda(x)$ into the eigenvalue problem.

Lemma 2. If there exists a positive eigenvalue $\lambda(\Lambda,\varkappa,c,\omega)$, then the corresponding eigenfunction is representable by an absolutely convergent series:

$$ \begin{equation*} u_\lambda(x)=\sum_{\gamma\colon x\to0}\prod_{z\in\gamma}\frac{\varkappa/2}{\mu(z,\omega)+\lambda+\varkappa}, \end{equation*} \notag $$
where $\gamma\colon a \rightsquigarrow b$ is a path $\{a=x_1,x_2,\dots,x_n\not=b\}$ from $a$ to $b$ with transitions to adjacent lattice points that (i) does not go through the point $0$ and (ii) is assumed not to contain the point $b$. The value $u_\lambda(0)$ is $1$.

For the the realization of the ‘worst’ environment $\mu(x,\omega)\equiv c$, the series for $u_\lambda(x)$ in Lemma 2 can be expressed in terms of elementary functions. The same is true for the ‘best’ environment $\mu(x,\omega)\equiv 0$. This implies the following result.

Theorem 1. If $\Lambda\geqslant\sqrt{2\varkappa c+c^2}-c$, then the eigenvalue $\lambda(\omega)$ lies in the interval $[\sqrt{(\Lambda+c)^2+\varkappa^2}-(\varkappa+c); \sqrt{\Lambda^2+\varkappa^2}-\varkappa]$ and, accordingly, $P(\Lambda,\varkappa,c)=1$.

Now we consider a non-random environment in which particles are killed at the points $x=-1$ and $x=1$ with intensities $\mu_{-1}>0$ and $\mu_{1}>0$, respectively. Then the Cauchy problem takes the form $\partial m_1(t,x, y)/\partial t=H_{1}m_1(t,x,y)$, $m_1(0,x,y)=\delta_y(x)$, where $H_1:=\varkappa \Delta+\delta_0(x)\Lambda-\delta_1(x)\mu_1-\delta_{-1}(x)\mu_{-1}$.

Lemma 3. The operator $H_1$ has a positive eigenvalue if and only if $\Lambda>(\mu_1+\mu_{-1}+2\sigma\mu_1\mu_{-1})/[(1+\sigma\mu_1)(1+\sigma\mu_{-1})]$, where $\sigma=2/\varkappa$.

Consider the set of environments $\Omega_1=\{\omega\in\Omega\colon \mu(1,\omega)=\mu_{1}, \mu(-1,\omega)=\mu_{-1}\}$. The mean number of particles in the non-random environment is almost surely larger than their mean number in any environment in $\Omega_1$. This remark and Lemma 3 yield the following result.

Theorem 2. $P(\Lambda,\varkappa,c)\leqslant\mathsf{P}\{\Lambda> (\xi_1+\xi_2+2\sigma\xi_1\xi_{2})/[(1+\sigma\xi_1)(1+\sigma\xi_{2})]\}$, where the $\xi_i$ are independent copies of $\mu(x,\omega)$.

Thus, new approaches to study branching random walks in random environments are proposed.


Bibliography

1. J. Gärtner and S. A. Molchanov, Comm. Math. Phys., 132:3 (1990), 613–655  crossref  mathscinet  zmath  adsnasa
2. S. Albeverio, L. V. Bogachev, S. A. Molchanov, and E. B. Yarovaya, Markov Process. Related Fields, 6:4 (2000), 473–516  mathscinet  zmath
3. E. B. Yarovaya, Branching rabdom waols in inhomogeneous medium, Center for Applies Research at the Faculty of Mechanics and Mathematics of Moscow State University, Moscow, 2007, 104 pp. (Russian)
4. F. den Hollander, S. A. Molchanov, and O. Zeitouni, Random media at Saint-Flour, Probab. St.-Flour, Springer, Heidelberg, 2012, vi+564 pp.  mathscinet  zmath

Citation: V. A. Kutsenko, S. A. Molchanov, E. B. Yarovaya, “Supercriticality conditions for branching walks in a random killing environment with a single reproduction centre”, Uspekhi Mat. Nauk, 78:5(473) (2023), 181–182; Russian Math. Surveys, 78:5 (2023), 961–963
Citation in format AMSBIB
\Bibitem{KutMolYar23}
\by V.~A.~Kutsenko, S.~A.~Molchanov, E.~B.~Yarovaya
\paper Supercriticality conditions for branching walks in a random killing environment with a single reproduction centre
\jour Uspekhi Mat. Nauk
\yr 2023
\vol 78
\issue 5(473)
\pages 181--182
\mathnet{http://mi.mathnet.ru/rm10147}
\crossref{https://doi.org/10.4213/rm10147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4723254}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..961K}
\transl
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 5
\pages 961--963
\crossref{https://doi.org/10.4213/rm10147e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001184355800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85191476039}
Linking options:
  • https://www.mathnet.ru/eng/rm10147
  • https://doi.org/10.4213/rm10147e
  • https://www.mathnet.ru/eng/rm/v78/i5/p181
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:257
    Russian version PDF:11
    English version PDF:36
    Russian version HTML:77
    English version HTML:101
    References:35
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024