Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 6, Pages 1158–1160
DOI: https://doi.org/10.4213/rm10118e
(Mi rm10118)
 

Brief communications

On explicit numerically realizable formulae for Poincaré–Steklov operators

A. S. Demidov

Lomonosov Moscow State University
References:
Received: 15.05.2023
Russian version:
Uspekhi Matematicheskikh Nauk, 2023, Volume 78, Issue 6(474), Pages 181–182
DOI: https://doi.org/10.4213/rm10118
Bibliographic databases:
Document Type: Article
MSC: Primary 35J05, 65J15; Secondary 35C99, 65N15
Language: English
Original paper language: Russian

1.

Let $u$ be a solution of the Dirichlet problem for the Laplace equation $\Delta u=0$ in a simply connected domain $\Omega\subset\mathbb{R}^2$ with $C^1$-smooth boundary $\Gamma$ of length $2\pi$. To be more precise: $\partial^2 u/\partial x^2+\partial^2 u/\partial y^2=0$ in $\Omega$, $u(P_s)=F(s)$, $P_s\in \Gamma$, where $s\in \mathbb{T}\overset{\rm def}{=}{\mathbb{R}}/{2\pi}$ is the natural parameter on $\Gamma$ (the arc length $\smile\! P_0P_s$ on the curve $\Gamma$ measured in the positive direction from some point $P_0$ to the point $P_s$), and the function $F\in C^1(\mathbb{T})$ is given by the Fourier series

$$ \begin{equation} F\colon\mathbb{T}\ni s\mapsto \sum_{k\geqslant 0}(a_k\cos ks+b_k\sin ks). \end{equation} \tag{1} $$
Let us begin with numerically realizable formulae for the Dirichlet–Robin operator (a particular case of the Poincaré–Steklov operator [1]) given by
$$ \begin{equation} \mathcal D\mathcal R(F)\overset{\rm def}{=}\biggl(\alpha u+ \beta\,\frac{\partial u}{\partial\nu}\biggr)\bigg|_{P_s\in\Gamma}\,,\qquad |\alpha|+|\beta|\ne 0, \end{equation} \tag{2} $$
where $\nu$ is the unit outward normal vector to the curve $\Gamma$.

If the domain $\Omega_\varepsilon$ differs from $\Omega$ only in that its boundary $\Gamma_\varepsilon=\partial\Omega_\varepsilon$ is analytic and its Hausdorff $C^1$-distance differs from that of $\Gamma$ by a quantity of order $\varepsilon>0$, then the operators $\mathcal D\mathcal R$ for $\Omega_\varepsilon$ and $\Omega$ differ in the $C^1$-metric by the same order. So we can assume that the curve $\Gamma$ is analytic. Under this assumption explicit numerically realizable formulae for the univalent mapping

$$ \begin{equation*} z\colon V_{\mathbb{T}}\ni\zeta=\rho e^{i\theta}\mapsto z(\zeta)= x(\rho,\theta)+iy(\rho,\theta)\in V_{\Gamma} \end{equation*} \notag $$
of a neighbourhood $V_{\mathbb{T}}$ of the unit circle $\mathbb{T}=\{\rho=1,\,\theta\in\mathbb{R}/2\pi\}$ to a neighbourhood $V_{\Gamma}\ni \zeta=\rho e^{i\theta}$ of the curve $\Gamma\subset\mathbb{R}^2\simeq\mathbb C\ni z=x+iy$ that is an isometry on $\mathbb T$ are presented in [2]. The isometry property
$$ \begin{equation} \biggl|\frac{dz(\zeta)}{d\zeta}\biggr|\equiv 1\quad \text{for}\ \ \zeta\in\mathbb{T} \end{equation} \tag{3} $$
plays a key role in the construction of formulae for the operator (2).

Consider a curve $\gamma=z(\mathcal C)\subset V_{\Gamma}$, where $\mathcal C=\{0<|\zeta|=r\}$, and $r$ is small. Let $g$ be the trace on $\gamma$ of the solution $u$ of the original Dirichlet problem. We set $f\colon\mathbb{T}\ni\theta\mapsto f(\theta)= g(z)\big|_{z=z(re^{i\theta})\in\gamma}$. The Fourier series of this periodic function has the form

$$ \begin{equation} f\colon\mathbb{T}\ni \theta\mapsto \sum_{k\geqslant 0}(c_k\cos k\theta+d_k\sin k\theta). \end{equation} \tag{4} $$
Taking (1) and (4) into account we set $\lambda_0=c_0$, and for $k\geqslant 1$ we define
$$ \begin{equation*} \begin{gathered} \, \lambda_k=a_k-\frac{c_k r^k-a_k r^{2k}}{1-r^{2k}}\,,\quad \mu_k=b_k-\frac{d_k r^k-b_k r^{2k}}{1-r^{2k}}\,, \\ \varphi_k=\frac{c_k-a_kr^k}{1-r^{2k}}\,, \quad\text{and}\quad \psi_k=\frac{d_k-b_kr^k}{1-r^{2k}}\,. \end{gathered} \end{equation*} \notag $$

Hence the function

$$ \begin{equation} \begin{aligned} \, \zeta&=\rho e^{i\theta}\mapsto U(\rho,\theta) \nonumber\\ &=\lambda_0+\sum_{k\geqslant 1}\biggl\{\rho^k[\lambda_k\cos k\theta+\mu_k\sin k\theta] +\biggl(\frac{r}{\rho}\biggr)^k[\varphi_k\cos k\theta+\psi_k\sin k\theta]\biggr\}, \end{aligned} \end{equation} \tag{5} $$
which is harmonic in the annulus $V_{\mathbb{T}}=\{r<\rho<1;\ \theta\in\mathbb{T}\}$, satisfies the boundary conditions $U(1,\theta)=F(\theta)$ and $U(r,\theta)=f(\theta)$.

Theorem 1. For the Dirichlet–Neumann operator $\mathcal D{\mathcal N}\bigl(u\big|_\Gamma\bigr)\overset{\rm def}{=} (\partial u/\partial\nu)\big|_\Gamma$,

$$ \begin{equation} \mathcal D{\mathcal N}\bigl(u\big|_{s\in\Gamma}\bigr)\overset{(3)}{=} \frac{\partial U(\rho,s)}{\partial\rho}\bigg|_{\rho=1}, \end{equation} \tag{6} $$
and for the operator (2),
$$ \begin{equation*} \mathcal D\mathcal R\bigl(u\big|_{s\in \Gamma}\bigr)=\biggl(\alpha u+ \beta\,\frac{\partial u}{\partial\nu}\biggr)\bigg|_{P_s\in\Gamma} \overset{(5),\,(6)}{=}\alpha U(1,s)+ \beta\,\frac{\partial U(\rho,s)}{\partial\rho}\bigg|_{\rho=1}. \end{equation*} \notag $$

Now we present numerically realizable formulae for $u\big|_\gamma$, where $u$ is the solution of the original Dirichlet problem. According to [3],

$$ \begin{equation} u(x,y)=\int_0^{2\pi}\!\mu(t)K(x(t)-x,y(t)-y)\,dt,\quad\text{where}\quad K(\xi(t),\eta(t))=\frac{\eta'(t)\xi-\eta\xi'}{\xi^2+\eta^2}\,, \end{equation} \tag{7} $$
that is, $K(\xi(t),\eta(t))=\dfrac{d}{dt}\arctan\dfrac{\eta(t)}{\xi(t)}$ , and $\mu$ is the solution of the equation
$$ \begin{equation} \mu(\tau)+\frac{1}{\pi}\int_0^{2\pi}\!\mu(t)\,\frac{d}{dt}\arctan \frac{y(t)-y(\tau)}{x(t)-x(\tau)}\,dt=\frac{1}{\pi}F(\tau)\,. \end{equation} \tag{8} $$
Approximating the integral in (8) by a sum (for details, see [4]) and setting, in succession, $\tau=t_1,\dots,t_n$, we obtain a system of linear algebraic equations, from which we find an approximation to $\mu$, and, correspondingly, an approximation to the solution of the original Dirichlet problem.

2.

A numerical realization of the Robin1–Robin2 operator, that is, the operator

$$ \begin{equation*} \biggl(\alpha_1u+\beta_1\frac{\partial u}{\partial\nu}\biggr)\bigg|_{\Gamma} \mapsto\biggl(\alpha_2u+ \beta_2\frac{\partial u}{\partial\nu}\biggr)\bigg|_{\Gamma}\,,\qquad |\alpha_k|+|\beta_k|\ne 0, \end{equation*} \notag $$
can be found from that for the above Dirichlet–Robin2 problem by means the construction (see, for example, [5]) of the solution of the $\gamma$-Robin1–Dirichlet problem $(\alpha_1u+\beta_1\,\partial u/\partial\nu)\big|_{\Gamma}\mapsto u\big|_{\gamma}$.

3.

Another particular case of Poincaré–Steklov operators is the operator $\mathcal G_{\mathcal M}\mathcal R$, where the Grinberg–Mayergoiz operator $ \mathcal G_{\mathcal M}$ [6], [7] is defined for $-1\leqslant\sigma<1$ by the conditions

$$ \begin{equation} (1-\sigma)u(P_s^-)-(1+\sigma)u(P_s^+)=2F(P_s)\quad\text{and}\quad \frac{\partial u}{\partial \nu}(P_s^-)= \frac{\partial u}{\partial\nu}(P_s^+). \end{equation} \tag{9} $$
Here the value at the point $P_s^+$ (or at $P_s^-$) is defined as the limit value at the point $P_s\in \Gamma$ along the outward (inward) normal vector $\nu$ to the curve $\Gamma$. Explicit formulae for the traces $u\big|_{\gamma}$ and $u\big|_{\Gamma}$ of the solution of problem (9) have been indicated above for the Dirichlet problem, that is, for $\sigma=-1$; for $|\sigma|<1$ formulae of the same type in terms of potentials with density satisfying an integral equation of the second kind can be found in [7]. Proceeding as in Theorem 1 we obtain numerically realizable formulae for $\mathcal G_{\mathcal M}\mathcal R(F)$.


Bibliography

1. V. I. Lebedev and V. I. Agoshkov, Poincaré–Steklov operators and their applications in analysis, Department of Numerical Mathematics, USSR Academy of Sciences, Moscow, 1983, 184 pp. (Russian)  mathscinet  zmath
2. A. S. Demidov, Funct. Anal. Appl., 55:1 (2021), 52–58  mathnet  crossref  mathscinet  zmath
3. L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, Interscience Publishers, Inc., New York; P. Noordhoff Ltd., Groningen, 1958, xv+681 pp.  mathscinet  zmath
4. V. K. Vlasov and A. B. Bakushchinskii, U.S.S.R. Comput. Math. Math. Phys., 3:3 (1963), 767–776  mathnet  crossref  mathscinet  zmath
5. Yijing Zhou and Wei Cai, J. Sci. Comput., 69:1 (2016), 107–121  crossref  mathscinet  zmath
6. G. A. Grinberg, Selected questions of mathematical theory of electric and magnetic phenomena, Publishing house of the USSR Academy of Sciences, Moscow, 1948, 727 pp. (Russian)  zmath
7. I. D. Mayergoiz, Siberian Math. J., 12:6 (1971), 951–958  mathnet  crossref  mathscinet  zmath

Citation: A. S. Demidov, “On explicit numerically realizable formulae for Poincaré–Steklov operators”, Uspekhi Mat. Nauk, 78:6(474) (2023), 181–182; Russian Math. Surveys, 78:6 (2023), 1158–1160
Citation in format AMSBIB
\Bibitem{Dem23}
\by A.~S.~Demidov
\paper On explicit numerically realizable formulae for Poincar\'e--Steklov operators
\jour Uspekhi Mat. Nauk
\yr 2023
\vol 78
\issue 6(474)
\pages 181--182
\mathnet{http://mi.mathnet.ru/rm10118}
\crossref{https://doi.org/10.4213/rm10118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4723261}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78.1158D}
\transl
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 6
\pages 1158--1160
\crossref{https://doi.org/10.4213/rm10118e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001202852000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85190277194}
Linking options:
  • https://www.mathnet.ru/eng/rm10118
  • https://doi.org/10.4213/rm10118e
  • https://www.mathnet.ru/eng/rm/v78/i6/p181
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:198
    Russian version PDF:7
    English version PDF:29
    Russian version HTML:17
    English version HTML:99
    References:20
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024