Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 3, Pages 569–571
DOI: https://doi.org/10.4213/rm10106e
(Mi rm10106)
 

Brief communications

The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$

V. D. Sedykh

National State University of Oil and Gas "Gubkin University"
References:
Received: 29.03.2023
Russian version:
Uspekhi Matematicheskikh Nauk, 2023, Volume 78, Issue 3(471), Pages 181–182
DOI: https://doi.org/10.4213/rm10106
Bibliographic databases:
Document Type: Article
MSC: 53D12, 57R45
Language: English
Original paper language: Russian

Light caustics, the evolutes of plane curves, and other envelopes of systems of rays are sets of critical values of so-called Lagrangian maps (see [1] and [5]). These sets are called caustics.

By Arnold’s theorem on Lagrangian singularities, the germs of generic Lagrangian maps $f\colon L\to V$ of a smooth manifold $L$ into a smooth manifold $V$ of the same dimension $n\leqslant 5$ are stable and simple (that is, have zero modality). They are Lagrangian equivalent to the germs at the origin of the maps

$$ \begin{equation} \mathbb{R}^n\to \mathbb{R}^n,\quad (\overline{t},\overline{q})\mapsto \biggl(-\frac{\partial S(\overline{t},\overline{q})} {\partial \overline{t}}\,,\overline{q}\biggr),\quad \overline{t}=(t_1,\dots,t_k),\quad \overline{q}=(q_{k+1},\dots,q_n), \end{equation} \tag{1} $$
where $S=S(\overline{t},\overline{q})$ is a function of one of the following types ($\mu\leqslant n+1$ is an integer):
$$ \begin{equation*} \begin{alignedat}{2} A_{\mu}^\pm\colon\ \ S&= \pm t_1^{\mu+1}+q_{\mu-1}t_1^{\mu-1}+\cdots+q_2t_1^2, &\qquad \mu&\geqslant 1; \\ D_{\mu}^{\pm}\colon\ \ S&= t_1^2t_2\pm t_2^{\mu-1}+q_{\mu-1}t_2^{\mu-2}+\cdots+q_3t_2^2, &\qquad \mu&\geqslant 4; \\ E_6^\pm\colon\ \ S&=t_1^3\pm t_2^4+q_5t_1t_2^2+q_4t_1t_2+q_3t_2^2, &\qquad \mu&=6. \end{alignedat} \end{equation*} \notag $$

The equivalence class of the germ of a Lagrangian map at a critical point with respect to Lagrangian equivalence is called a (Lagrangian) singularity. The type of the function $S$ determines the type of this singularity (of a germ). The number $\operatorname{codim}X_{\mu}=\mu-1$ is called the codimension of type $X_{\mu}$ singularity. In what follows $X_{\mu}^\delta$ denotes $X_{\mu}^+$ for $\delta=+1$ and $X_{\mu}^-$ for $\delta=-1$. If $\mu$ is even or $\mu=1$, then Lagrangian germs of types $A_{\mu}^{+}$ and $A_{\mu}^{-}$ are Lagrangian equivalent and are denoted by $A_{\mu}$.

To each point $y$ in the target space $V$ of a generic proper Lagrangian map $f$ with simple stable singularities we can assign the unordered set of symbols from Arnold’s theorem that are the types of the germs of $f$ at the preimages of the point $y$. The formal commutative product $\mathcal{A}$ of these symbols is called the type of the multisingularity of $f$ at $y$ (or the type of a monosingularity if $y$ has only one preimage). If the preimage $f^{-1}(y)$ is empty, then $\mathcal{A}=\mathbf{1}$. The set $\mathcal{A}_f$ of points $y\in V$ at which the map $f$ has a multisingularity of type $\mathcal{A}=X_1\cdots X_p$ is a smooth submanifold in the ambient space $V$. It is called the manifold of multisingularities of type $\mathcal{A}$. Its codimension $\operatorname{codim}\mathcal{A}$ is equal to $\sum_{i=1}^{p}\operatorname{codim}X_i$.

In [2] we studied the topology of the manifolds of multisingularities for Lagrangian germs of types $A_\mu^{\pm}$ and $D_\mu^{\pm}$ (for all $n$). In particular, it follows from Theorem 7.8 in that paper that the total number of connected components of the complement to the caustic of the map (1) with singularity of type $D_{\mu}^\delta$ at the origin is equal to: $(k^2+3k-2)/2$ if $\mu=2k$, $\delta=+1$; $(k^2+k)/2$ if $\mu=2k$, $\delta=-1$; and $(k^2+ 3k)/2$ if $\mu= 2k+ 1$, $\delta=\pm1$. Among these, $(k^2-3k+2)/2$, $(k^2-k)/2$, and $(k^2- k)/2$ components, respectively, are homotopy equivalent to a circle and the other components are contractible.

In [3], [4], and [6] we studied the manifolds of multisingularities for a Lagrangian germ of type $E_6^{\pm}$ at points of its caustic as well as the complement to the image. This note describes the topology of the connected components of the complement to the caustic of a germ $E_6^{\pm}$ in its image.

Theorem. Let the Lagrangian map $f$ be given by (1). Assume that it has a singularity of type $E_6^{\pm}$ at the origin. Then the complement to the caustic of $f$ has seven connected components: two connected components of the manifold of multisingularities of each type $A_1^2$, $A_1^4$, and $A_1^6$, and one component is the complement to the image. All of them are contractible except for one connected component of type $A_1^4$. This non-contractible component is homotopy equivalent to a circle $S^1$. Its inverse image under $f$ has three connected components. The restriction of $f$ to one of them is a two-sheeted covering; the restriction to each of the other two is a diffeomorphism.

Consider a generic proper Lagrangian map $f\colon L\to V$ with simple stable singularities. Assume that it has a multisingularity of type $\mathcal{B}$ at a point $y\in V$, where $\operatorname{codim}\mathcal{B}=c$. Fix a neighbourhood $U$ of the origin $0$ in $\mathbb{R}^{c}$, and consider a smooth embedding $h\colon U\to V$ such that $h(0)=y$ and the submanifold $h(U)\subset V$ is transversal to the manifold $\mathcal{B}_f$ at $y$. Let $B_{\varepsilon}\subset \mathbb{R}^{c}$ denote the open $c$-dimensional ball of radius $\varepsilon>0$ centred at $0$. Then there is a positive number $\varepsilon_0=\varepsilon_0(f,y,h)$ such that for all types $\mathcal{A}$ and all $\varepsilon<\varepsilon_0$ the set $h(B_{\varepsilon})\cap \mathcal{A}_f$ is a smooth manifold and the equivalence class of this manifold under diffeomorphisms depends only on the types $\mathcal{A}$ and $\mathcal{B}$.

We denote this manifold by $\Xi_{\mathcal{A}}(\mathcal{B})$. A multisingularity of type $\mathcal{B}$ is adjacent to a multisingularity of type ${\mathcal A}$ if $\mathcal{A}\ne\mathcal{B}$ and $\Xi_\mathcal{A}(\mathcal{B})\ne\varnothing$. The Euler characteristic $J_{\mathcal{A}}(\mathcal{B})$ of the manifold $\Xi_{\mathcal{A}}(\mathcal{B})$ is called the adjacency index of a multisingularity of type $\mathcal{B}$ to a multisingularity of type $\mathcal{A}$. The adjacency of a multisingularity of type $\mathcal{B}$ to a multisingularity of type $\mathcal{A}$ is said to be simple if all connected components of $\Xi_{\mathcal{A}}(\mathcal{B})$ are contractible. Otherwise, this adjacency is called complicated.

From [3], [4], [6], and the above theorem, we obtain the following result.

Corollary. The indices of all adjacencies of a monosingularity of type $E_6^\delta$ to multisingularities of a generic Lagrangian map are as follows:

$$ \begin{equation*} \begin{gathered} \, \begin{array} {|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|} \hline \mathcal{A} & \mathbf{1} & \vphantom{\sum^{A^1}_A}A_1^2 & A_1^4 & A_1^6 & A_2 & A_2A_1^2 & A_2A_1^4 & A_2^2 & A_2^2A_1^2 & A_2^3 \\ J_{\mathcal{A}}(E_6^\delta) & 1 & 2 &1& 2 & 2 & 6 & 12 & 3 & 16 & 4 \\ \hline \end{array} \\ \begin{array}{|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|} \hline \mathcal{A} &A_3^\delta A_1 & A_3^{-\delta}A_1 & A_3^\delta A_1^3 & A_3^{-\delta}A_1^3 & A_3^\delta A_2A_1 & A_3^{-\delta}A_2A_1 & \vphantom{\sum^{A^1}_A}(A_3^\delta)^2 & A_4 \\ J_{\mathcal{A}}(E_6^\delta) & 2 & 3 & 6 & 5 & 8 & 6 & 1 & 2 \\ \hline \end{array} \\ \begin{array}{|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|@{ }c@{ }|} \hline \mathcal{A} & A_4A_1^2 & A_4A_2 & A_5^+A_1 & A_5^-A_1 & D_4^+ & D_4^+A_1^2 & D_4^-A_1^2 & D_4^+A_2 & \vphantom{\sum^{A^1}_A}D_5^\delta A_1\\ J_{\mathcal{A}}(E_6^\delta) & 6 & 4 & 1 & 1 & 1 & 2 & 1 & 2 & 2\\ \hline \end{array} \end{gathered} \end{equation*} \notag $$
All adjacencies, except for the adjacency to a multisingularity of type $A_1^4$ are simple. The adjacency to a multisingularity of type $A_1^4$ is complicated.

Remark. In [2] we found a system of relations between the adjacency indices of Lagrangian multisingularities (see [2], Theorem 5.2). The indices listed in the above corollary satisfy all these relations.

Other results on the topological properties of Lagrangian maps can be found in the book [7].


Bibliography

1. V. I. Arnold, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990, xiv+259 pp.  crossref  mathscinet  zmath
2. V. D. Sedykh, Izv. Math., 79:3 (2015), 581–622  mathnet  crossref  mathscinet  zmath  adsnasa
3. V. D. Sedykh, Izv. Math., 82:3 (2018), 596–611  mathnet  crossref  mathscinet  zmath  adsnasa
4. V. D. Sedykh, Izv. Math., 85:2 (2021), 279–305  mathnet  crossref  mathscinet  zmath  adsnasa
5. V. D. Sedykh, Mathematical methods of catastroph theory, Moscow Center of Continuous Mathematical Education, Moscow, 2021, 224 pp. (Russian)
6. V. D. Sedykh, Funct. Anal. Appl., 57:1 (2023), 80–82  mathnet  crossref  mathscinet  zmath
7. V. A. Vasil'ev, Lagrange and Legendre characteristic classes, Adv. Stud. Contemp. Math., 3, Gordon and Breach Sci. Publ., New York, 1988, x+268 pp.  mathscinet  zmath

Citation: V. D. Sedykh, “The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$”, Russian Math. Surveys, 78:3 (2023), 569–571
Citation in format AMSBIB
\Bibitem{Sed23}
\by V.~D.~Sedykh
\paper The topology of the complement to the caustic of a Lagrangian germ of type $E_6^\pm$
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 3
\pages 569--571
\mathnet{http://mi.mathnet.ru//eng/rm10106}
\crossref{https://doi.org/10.4213/rm10106e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4673251}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..569S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001146055900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171840023}
Linking options:
  • https://www.mathnet.ru/eng/rm10106
  • https://doi.org/10.4213/rm10106e
  • https://www.mathnet.ru/eng/rm/v78/i3/p181
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:256
    Russian version PDF:21
    English version PDF:56
    Russian version HTML:103
    English version HTML:101
    References:31
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024