Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 6, Pages 1149–1151
DOI: https://doi.org/10.4213/rm10083e
(Mi rm10083)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief Communications

Asymptotic properties of Hermite–Padé polynomials and Katz points

S. P. Suetin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Funding agency Grant number
Russian Science Foundation 19-11-00316
This work was supported by the Russian Science Foundation under grant no. 19-11-00316, https://rscf.ru/project/19-11-00316/.
Received: 17.10.2022
Russian version:
Uspekhi Matematicheskikh Nauk, 2022, Volume 77, Issue 6(468), Pages 203–204
DOI: https://doi.org/10.4213/rm10083
Bibliographic databases:
Document Type: Article
MSC: 41A21
Language: English
Original paper language: Russian

1. In a number of topical physical problems considered in the framework of the Rayley– Schrödinger perturbation theory, in calculations based on series of perturbation theory authors use Hermite–Padé polynomnials of the first type: see [1], [7], and [2]. In this case, in accordance with Katz’s results [4], authors assume that the multivalued analytic function corresponding to the series of perturbation theory takes real values on the real line and has only complex-conjugate square-root branch points. The original series of perturbation theory is a series in a small parameter $\varepsilon$, and the value of the function defined by this series must be found for $\varepsilon=1$. If this function has branch points in the unit disc, then one cannot calculate this value from the partial sums of the original series. Such branch points are called Katz points. When they are present, to calculate the value of the function at $\varepsilon=1$, in place of partial sums authors use Padé approximants, Shafer quadratic approximants, or other approximnts based on Hermite–Padé polynomials (see [10] and [5]). Thus determining Katz points numerically is a challenging problem.

Note the following. Let $S$ be the Stahl compact set (with respect to $\varepsilon=0$) corresponding to our series of perturbation theory. By Stahl points we will mean the branch points of the function defined by the series of perturbation theory that occur on $S$. Stahl points in the unit disc are just Katz points.

2. It will be convenient to us below to deal with Laurent series at $z=\infty$. In accordance with Katz’s results, we consider the class of multivalued analytic functions $f$ all of whose branch points are of the second order. In addition, we assume that each $f$ has a holomorphic germ $f_\infty\in\mathscr H(\infty)$ at the point $z=\infty$ such that the corresponding Stahl compact set has no Chebotarev points. In this case we write $(f,f_\infty)\in\mathscr F$.

For $(f,f_\infty)\in\mathscr F$ and an arbitrary $n\in\mathbb N$ let $Q_{n,j}$, $j=0,1,2$, denote the Hermite–Padé polynomials of the first type for the tuple $[1,f,f^2]$ and multi-index $(n,n,n)$:

$$ \begin{equation} (Q_{n,0}+Q_{n,1}f+Q_{n,2}f^2)(z)=O(z^{-2n-2}),\qquad z\to\infty. \end{equation} \tag{1} $$
The polynomial $D_n:=Q^2_{n,1}-4Q_{n,0}Q_{n,2}$ is the discriminant of the quadratic equation corresponding to (1) and arising in connection with Shafer approximations. ‘Generically’, $\deg{Q_{n,j}}=n$ and $\deg{D_n}=2n$.

An analysis of the behaviour of the zeros of $D_n$ for variable $n$ underlies the numerical search for Katz points; see [1] and [2]. It follows from a result stated in [6] that for meromorphic functions on a three-sheeted Riemann surface the zeros of the $Q_{n,j}$ and $D_n$ have the same limiting distribution. On the other hand numerical experiments performed with the use of specially designed software [3] show that the polynomials $D_n$ have the following property: a finite number of their zeros are attracted to Stahl points as $n\to\infty$. In the general case this should be regarded as a conjecture; to prove it one must find suitable formulae for the strong asymptotics of the polynomials $Q_{n,j}$.

Conjecture. Let $(f,f_\infty)\in\mathscr F$, let $S=S(f_\infty)$ be the corresponding Stahl compact set, $\Sigma_S(f_\infty)=\{a_1,\dots,a_m\}\subset S$ be the set of Stahl points, and $D_n$, $n=0,1,\dots$, be the discriminants for the tuple $[1,f,f^2]$. Then the discriminant has $m$ zeros $\zeta_{n,j}$, $j=1,\dots,m$, such that $\zeta_{n,j}\to a_j$ as $n\to\infty$.

3. At the moment we can only prove this conjecture in the special class $\mathscr Z(\Delta)$ of functions $f$, $(f,f_\infty)\in\mathscr F$, defined in terms of the inverse Joukowsky function:

$$ \begin{equation*} f(z)=\biggl[\biggl(A-\frac{1}{\varphi(z)}\biggr) \biggl(B-\frac{1}{\varphi(z)}\biggr)\biggr]^{-1/2}, \end{equation*} \notag $$
where $1<A<B$ and $\varphi(z)=z+(z^2-1)^{1/2}\sim 2z$ as $z\to\infty$. The function $f$ has four branch points, $\pm1$, $a$, and $b$, where $a=(A+1/A)/2$ and $b=(B+1/B)/2$. Under the above condition on $\varphi$ the interval $\Delta=[-1,1]$ is the Stahl compact set for $f_\infty$, and $\pm1$ are the Stahl points. The pair of functions $(f,f^2)$ forms a Nikishin system (see [9]).

Theorem 1. Let $f\in\mathscr Z(\Delta)$, and let $D_n$ be the discriminant corresponding to the Hermite–Padé polynomials for the tuple $[1,f,f^2]$. Then $D_n$ has zeros $\zeta_{n,1}$ and $\zeta_{n,2}$ such that $\zeta_{n,1}\to-1$ and $\zeta_{n,2}\to1$ as $n\to\infty$.

The proof is based on the asymptotic representations for Hermite–Padé polynomials that were obtained in [8].


Bibliography

1. A. D. Bykov and A. N. Duchko, Optics and Spectrosc., 120:5 (2016), 669–679  crossref  adsnasa
2. X. Chang, E. O. Dobrolyubov, and S. V. Krasnoshchekov, Phys. Chem. Chem. Phys., 24:11 (2022), 6655–6675  crossref
3. N. R. Ikonomov and S. P. Suetin, HEPAComp – Hermite–Padé approximant computation, Ver. 1.3/15.10.2020, 2020 http://justmathbg.info/hepacomp.html
4. A. Katz, Nuclear Phys., 29 (1962), 353–372  crossref  mathscinet
5. A. V. Komlov, Mat. Sb., 212:12 (2021), 40–76  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 212:12 (2021), 1694–1729  crossref  adsnasa
6. A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, and S. P. Suetin, Uspekhi Mat. Nauk, 71:2(428) (2016), 205–206  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 71:2 (2016), 373–375  crossref  adsnasa
7. S. V. Krasnoshchekov, E. O. Dobrolyubov, M. A. Syzgantseva, and R. V. Palvelev, Molec. Phys., 118:11 (2020), e1743887, 7 pp.  mathnet  crossref  adsnasa
8. G. López Lagomasino and W. Van Assche, Mat. Sb., 209:7 (2018), 106–138  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 209:7 (2018), 1019–1050  crossref  adsnasa
9. S. P. Suetin, Mat. Zametki, 104:6 (2018), 918–929  mathnet  crossref  mathscinet  zmath; English transl. in Math. Notes, 104:6 (2018), 905–914  crossref
10. S. P. Suetin, Uspekhi Mat. Nauk, 75:4(454) (2020), 213–214  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 75:4 (2020), 788–790  crossref  adsnasa

Citation: S. P. Suetin, “Asymptotic properties of Hermite–Padé polynomials and Katz points”, Uspekhi Mat. Nauk, 77:6(468) (2022), 203–204; Russian Math. Surveys, 77:6 (2022), 1149–1151
Citation in format AMSBIB
\Bibitem{Sue22}
\by S.~P.~Suetin
\paper Asymptotic properties of Hermite--Pad\'e polynomials and Katz points
\jour Uspekhi Mat. Nauk
\yr 2022
\vol 77
\issue 6(468)
\pages 203--204
\mathnet{http://mi.mathnet.ru/rm10083}
\crossref{https://doi.org/10.4213/rm10083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461390}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77.1149S}
\transl
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 6
\pages 1149--1151
\crossref{https://doi.org/10.4213/rm10083e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001018999000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85164446879}
Linking options:
  • https://www.mathnet.ru/eng/rm10083
  • https://doi.org/10.4213/rm10083e
  • https://www.mathnet.ru/eng/rm/v77/i6/p203
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:457
    Russian version PDF:33
    English version PDF:33
    Russian version HTML:197
    English version HTML:250
    References:42
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024