Abstract:
The review describes the design of supercapacitors and demonstrates their advantages over batteries and their main drawback: fast self-discharge. Various types of highly dispersed carbon materials for electrodes, functional groups on their surface, porous structure and hydrophilic–hydrophobic properties are considered. Data on the self-discharge of supercapacitors are discussed. Self-discharge investigation methods, mechanisms and mathematical modelling are analyzed and the effect of surface functional groups on this process is demonstrated. The methods for minimizing the self-discharge are described, in particular, using additives to the electrolyte, design of solid-state supercapacitors and supercapacitors with ion exchange membranes, the use of electrolytes free from impurities and chemical modification of electrodes. The developed new-generation supercapacitors with enhanced characteristics are mentioned. Electrodes based on conductive polymers are considered, and the key characteristics of supercapacitors manufactured by various companies are given.
The bibliography includes 160 references.
Keywords:
supercapacitor, self-discharge, electric double layer, specific surface area, porous structure, functional carbon groups.
Received: 16.01.2022
Bibliographic databases:
Document Type:
Article
Language: English
Original paper language: Russian
Citation:
Yu. M. Volfkovich, “Supercapacitors: problems and prospects of development”, Russian Chem. Reviews, 91:8 (2022), RCR5044
\Bibitem{Vol22}
\by Yu.~M.~Volfkovich
\paper Supercapacitors: problems and prospects of development
\jour Russian Chem. Reviews
\yr 2022
\vol 91
\issue 8
\papernumber RCR5044
\mathnet{http://mi.mathnet.ru/eng/rcr4396}
\crossref{https://doi.org/10.1070/RCR5044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000893745800002}
\elib{https://elibrary.ru/item.asp?id=48738176}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142505954}
Linking options:
https://www.mathnet.ru/eng/rcr4396
https://doi.org/10.1070/RCR5044
This publication is cited in the following 13 articles:
Jianglong Cheng, Baosen Mi, Quan Wang, Hongbin Wang, Tao Zhou, Yaru Li, Haipeng Hou, Yumeng Zhu, Chemical Engineering Journal, 2025, 161242
Daria V. Chernysheva, Nina V. Smirnova, Valentine P. Ananikov, ChemSusChem, 17:5 (2024)
Yu.M. Volfkovich, Journal of Electroanalytical Chemistry, 963 (2024), 118290
Stanleydhinakar Mathan, Manickam Selvaraj, Mohammed A. Assiri, Kavitha Kandiah, Ramesh Rajendran, Surfaces and Interfaces, 51 (2024), 104707
V. V. Pavlenko, A. Yu. Zakharov, Zh. E. Ayaganov, Z. A. Mansurov, Russian Chem. Reviews, 93:9 (2024), RCR5122
S. I. Nefedkin, Ya. V. Isaev, V. D. Mikhnevich, V. E. Yeletsky, M. A. Klimova, Russ J Electrochem, 60:12 (2024), 987
D. V. Chernysheva, E. A. Sidash, M. S. Konstantinov, V. A. Klushin, D. V. Tokarev, V. E. Andreeva, E. A. Kolesnikov, V. V. Kaichev, N. V. Smirnova, V. P. Ananikov, ChemSusChem, 16:8 (2023)
A. Hroub, M. H. Aleinawi, M. Stefan, M. Mihet, A. Ciorita, F. Bakan-Misirlioglu, E. Erdem, A. M. Rostas, Journal of Alloys and Compounds, 958 (2023), 170442
I. V. Bezsudnov, A. G. Khmelnitskaia, A. A. Kalinina, S. A. Ponomarenko, Russian Chem. Reviews, 92:2 (2023), RCR5070
Yu. M. Volfkovich, Russian Chem. Reviews, 92:6 (2023), RCR5080
V. P. Tolstoy, L. B. Gulina, A. A. Meleshko, Russian Chem. Reviews, 92:3 (2023), RCR5071
Yu. M. Volfkovich, Russ J Electrochem, 59:5 (2023), 347