Abstract:
Modern approaches to increasing the efficiency of solid-oxide fuel cells (SOFCs) based on electrolytic membranes with mixed conductivity are considered. These approaches are based on material-science concepts (expansion of the electrolytic domain boundary due to the doping of basic oxides and development of various composite materials) and various technological solutions (application of electron-blocking layers on the anode and cathode sides, rational selection of the electrolyte thickness, and optimization of the electrolyte and electrode structures by synthesizing heterostructures). The methods of mathematical modelling of devices with an electrolytic membrane having mixed conductivity are analyzed in order to determine the most efficient design and optimal operation conditions for SOFCs. The application of nanocomposite electrolytes with a core–shell structure and salt composites is considered. Data on new design solutions — single-layer and single-chamber SOFCs — are presented. The prospects of the proposed approaches are evaluated. The bibliography includes 384 references.
Keywords:
Solid Oxide Fuel Cell, doped ceria, oxygen ion conductivity, grain conductivity, grain boundary conductivity, electron conductivity, open circuit value, heterostructure, nanocomposite .
Citation:
E. Yu. Pikalova, E. G. Kalinina, “Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency”, Russian Chem. Reviews, 90:6 (2021), 703–749
This publication is cited in the following 56 articles:
Nataliia Tarasova, Muhammad Bilal Hanif, Naveed Kausar Janjua, Shahid Anwar, Martin Motola, Dmitry Medvedev, International Journal of Hydrogen Energy, 50 (2024), 104
Ahmet Hatipogullari, Cigdem Timurkutluk, Sezer Onbilgin, Bora Timurkutluk, Ceramics International, 50:5 (2024), 7723
Liana R. Tarutina, Maria A. Gordeeva, Danil E. Matkin, Mariam T. Akopian, George N. Starostin, Anna V. Kasyanova, Artem P. Tarutin, Nikolai A. Danilov, Inna A. Starostina, Dmitry A. Medvedev, Zongping Shao, Chemical Engineering Journal, 2024, 151615
Stanislav Baratov, Elena Filonova, Anastasiya Ivanova, Muhammad Bilal Hanif, Muneeb Irshad, Muhammad Zubair Khan, Martin Motola, Sajid Rauf, Dmitry Medvedev, Journal of Energy Chemistry, 94 (2024), 302
C. Valencia-Balvín, S. Pérez-Walton, J. Peralta, J.M. Osorio-Guillén, Computational Materials Science, 231 (2024), 112536
M. V. Kalinina, I. G. Polyakova, S. V. Myakin, T. V. Khamova, L. N. Efimova, I. Yu. Kruchinina, Russ. J. Inorg. Chem., 2024
M. V. Kalinina, I. G. Polyakova, S. V. Myakin, T. V. Khamova, L. N. Efimova, I. Yu. Kruchinina, Glass Phys Chem, 50:1 (2024), 17
A. A. Belmesov, L. V. Shmygleva, A. A. Baranov, A. V. Levchenko, Russian Chem. Reviews, 93:6 (2024), RCR5121
Danil E. Matkin, Inna A. Starostina, Muhammad Bilal Hanif, Dmitry A. Medvedev, J. Mater. Chem. A, 2024
M. V. Kalinina, I. G. Polyakova, S. V. Myakin, T. V. Khamova, L. N. Efimova, I. Yu. Kruchinina, Fizika i himiâ stekla, 50:1 (2024), 69
Marzena Leszczyńska-Redek, Marcin Małys, Jan Jamroz, Wojciech Wróbel, Aleksandra Dziȩgielewska, Marcin Hołdyński, Jakub Sitek, Franciszek Krok, Isaac Abrahams, Ceramics International, 2024
Syed Ismail Ahmad, Samia E. Attia Negm, D. Ravi Kumar, M. Buchi Suresh, Arab J Sci Eng, 2024
E. G. Kalinina, D. S. Rusakova, T. V. Terziyan, Russ. J. Phys. Chem., 98:11 (2024), 2650
E. G. Kalinina, D. S. Rusakova, K. S. Shubin, L. V. Ermakova, E. Yu. Pikalova, International Journal of Hydrogen Energy, 48:59 (2023), 22559
E. Pikalova, E. Kalinina, Membranes, 13:5 (2023), 484
A. A. Solovyev, A. V. Shipilova, S. V. Rabotkin, N. M. Bogdanovich, E. Yu Pikalova, International Journal of Hydrogen Energy, 48:59 (2023), 22594
E. G. Kalinina, E. Yu. Pikalova, International Journal of Hydrogen Energy, 48:59 (2023), 22610
V. Sadykov, N. Eremeev, E. Sadovskaya, Y. Bespalko, M. Simonov, M. Arapova, E. Smal, Catalysis Today, 423 (2023), 113936
E. Yu. Pikalova, L. V. Ermakova, M. I. Vlasov, International Journal of Hydrogen Energy, 48:59 (2023), 22545