Loading [MathJax]/jax/output/SVG/config.js
Russian Chemical Reviews
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Usp. Khim.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Chemical Reviews, 2021, Volume 90, Issue 6, Pages 627–643
DOI: https://doi.org/10.1070/RCR5014
(Mi rcr4346)
 

This article is cited in 186 scientific papers (total in 186 papers)

Hydrogen energy: development prospects and materials

S. P. Filippova, A. B. Yaroslavtsevb

a Energy Research Insnitute of the Russian Academy of Sciences, Moscow
b Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow
Abstract: The review addresses the prospects of global hydrogen energy development. Particular attention is given to the design of materials for sustainable hydrogen energy applications, including hydrogen production, purification, storage, and conversion to energy. The review highlights the key role of oxide-supported metal or alloy nanoparticles as catalysts in the hydrogen production via the conversion of natural gas or alcohols. An alternative approach is the pyrolysis of hydrocarbons giving hydrogen and carbon. The direct production of high-purity hydrogen can be performed using electrolysis or membrane catalysis. Apart from conventional hydrogen storage methods such as the compression and liquefaction, the hydrogen alloy absorption and chemical conversion to liquid carriers (ammonia and toluene cycles) are considered. Fuel cells, containing catalysts and proton-conducting membranes as the key components, are used for hydrogen energy generation. Binary platinum alloys or core–shell structures supported on carbon or oxides can be employed to facilitate the oxygen electroreduction and CO electrooxidation in low-temperature fuel cells. High conductivity and selectivity are provided by perfluorinated sulfonic acid membranes. The high cost of the latter materials dictates the development of alternative membrane materials. A crucial issue in high-temperature fuel cells is the necessity of reducing the operating temperature and ohmic losses. This problem can be solved by designing thin-film materials and replacing oxygen-conducting ceramic membranes by proton-conducting membranes.
The bibliography includes 290 references.
Keywords: Hydrogen, hydrogen energy, hydrogen production, hydrogen purification, hydrogen storage, fuel cells, electrocatalysts, membranes, steam reforming, partial oxidation.
Received: 18.12.2020
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: S. P. Filippov, A. B. Yaroslavtsev, “Hydrogen energy: development prospects and materials”, Russian Chem. Reviews, 90:6 (2021), 627–643
Citation in format AMSBIB
\Bibitem{FilYar21}
\by S.~P.~Filippov, A.~B.~Yaroslavtsev
\paper Hydrogen energy: development prospects and materials
\jour Russian Chem. Reviews
\yr 2021
\vol 90
\issue 6
\pages 627--643
\mathnet{http://mi.mathnet.ru/eng/rcr4346}
\crossref{https://doi.org/10.1070/RCR5014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021RuCRv..90..627F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000697214600001}
\elib{https://elibrary.ru/item.asp?id=46827690}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107853952}
Linking options:
  • https://www.mathnet.ru/eng/rcr4346
  • https://doi.org/10.1070/RCR5014
  • https://www.mathnet.ru/eng/rcr/v90/i6/p627
  • This publication is cited in the following 186 articles:
    1. Mengyao Su, Fangfei Liu, Tursun Abdiryim, Feng Xu, Jiangan You, Jiaying Chen, Hongyan Yin, Yancai Li, Lizhi Chen, Xinyu Jing, Xiong Liu, Fuel, 381 (2025), 133328  crossref
    2. Yueyue Xie, Nannan Huang, Wei Gao, Zilin Dou, Zhaolong Liu, Huilu Wu, Journal of Molecular Structure, 1322 (2025), 140391  crossref
    3. Naveen Kosar, Tariq Mahmood, Abdulrahman Allangawi, Muhammad Imran, Utkirjon Holikulov, Inorganic Chemistry Communications, 172 (2025), 113672  crossref
    4. Seromlyanova Ksenia Andreevna, Markova Ekaterina Borisovna, Cherednichenko Alexander Genrihovich, Lecture Notes in Electrical Engineering, 1333, Advances in Clean and Green Energy Solutions: ICCGE 2024 Proceedings, 2025, 127  crossref
    5. Zixiang Wei, Liangliang Jiang, Aliakbar Hassanpouryouzband, Shanshan Chen, Yanpeng Chen, Yiwen Ju, Lele Feng, Kouqi Liu, Jiansheng Zhang, Zhangxin Chen, S.M. Farouq Ali, Energy Conversion and Management, 325 (2025), 119449  crossref
    6. Bui Thi Hoa, Nguyen Duc Lam, Bui Son Tung, Bui Xuan Khuyen, Nguyen Thu Loan, Vu Thi Kim Oanh, Nguyen Thi Mai, Do Chi Linh, Adv. Nat. Sci: Nanosci. Nanotechnol., 16:1 (2025), 015005  crossref
    7. Zhanhong Xiao, Xiaosheng Tang, Feng Gao, Junmin Xue, Xiaopeng Wang, DeCarbon, 2025, 100097  crossref
    8. Xuerui Ma, International Journal of Hydrogen Energy, 100 (2025), 1176  crossref
    9. Caiyuan Zhu, Linfeng Xiao, Yu Zhang, Yuwei Jiang, Xue Zhao, Qian Liu, Abdukader Abdukayum, Guangzhi Hu, Materials Today Energy, 48 (2025), 101796  crossref
    10. Sobhan Farahani, Saeed Ghasemzade Bariki, Mohammad amin Sobati, Salman Movahedirad, International Journal of Hydrogen Energy, 102 (2025), 1350  crossref
    11. Chilou Zhou, Zhiqiu Ye, Yue Tan, Zhenghua Wu, Xinyi Guo, Yinglin Bai, Xuying Xie, Zilong Wu, Ji'an Feng, Yao Xu, Bo Deng, Hao Wu, Nanomaterials, 15:2 (2025), 124  crossref
    12. Qi-Yu Xu, Yi-Feng Chen, Ning-Ning Yao, Jia-Kai Zhang, Yimin Huang, Dong Han, Wei-Guo Pan, Energy Conversion and Management, 326 (2025), 119530  crossref
    13. Boqiao Wang, Bin Zhang, Yuanchen Xia, Siqi Zhang, Zhuohui Liang, Wenbin Zhu, Ke Ye, Xuexing Fan, Ruilin Song, Ocean Engineering, 322 (2025), 120526  crossref
    14. A. Kavoosi, M. Tarafdar Hagh, Journal of Energy Storage, 113 (2025), 115691  crossref
    15. Zihan Su, Dinghan Liu, Yuhang Li, Xiaoyi Li, Dewei Chu, Liyun Cao, Jianfeng Huang, Liangliang Feng, Catalysts, 15:2 (2025), 136  crossref
    16. Galina Kholodnaya, Denis Ponomarev, Olga Lapteva, Roman Sazonov, Radiation Effects and Defects in Solids, 2025, 1  crossref
    17. Ebru Halvacı, Mucella Kaya, Yüksel Elif Serin, Ozge Ozdemir, Aysenur Aygun, Fatih Sen, International Journal of Hydrogen Energy, 112 (2025), 144  crossref
    18. Mingyao Xiong, Changqing Lin, Yang Xue, Dan Huang, Inorganic Chemistry Communications, 2025, 114264  crossref
    19. Baran Taşğ{\i}n, Jiří Ryšavý, Thangavel Sangeetha, Wei-Mon Yan, GEFR, 2025  crossref
    20. Nguyen Chi Thanh, ChemistrySelect, 10:10 (2025)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uspekhi Khimii Uspekhi Khimii
    Statistics & downloads:
    Abstract page:374
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025