Loading [MathJax]/jax/output/SVG/config.js
Russian Chemical Reviews
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Usp. Khim.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Chemical Reviews, 2021, Volume 90, Issue 1, Pages 116–170
DOI: https://doi.org/10.1070/RCR4959
(Mi rcr4329)
 

This article is cited in 21 scientific papers (total in 21 papers)

Generation of aryl radicals by redox processes. Recent progress in the arylation methodology

D. I. Bugaenko, A. A. Volkov, A. V. Karchava, M. A. Yurovskaya

Lomonosov Moscow State University, Faculty of Chemistry
Abstract: Arylation methods based on the generation and use of aryl radicals have become a rapidly growing field in Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon–carbon and carbon–heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II,VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Keywords: aromatic radicals, aryldiazonium salts, diazenes, triazenes, diaryliodonium salts, arylazosulfones, aryl halides, N-arylpyridinium salts, sulfonium salts, sulfochlorides, aryl boronic acids, aromatic acids, arylhydrazines, single electron transfer, photoredox catalysts, oxidation, reduction, cathodic reduction, arylation reactions.
Funding agency Grant number
Russian Foundation for Basic Research 19-33-90280
20-03-00456
Received: 16.04.2020
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: D. I. Bugaenko, A. A. Volkov, A. V. Karchava, M. A. Yurovskaya, “Generation of aryl radicals by redox processes. Recent progress in the arylation methodology”, Russian Chem. Reviews, 90:1 (2021), 116–170
Citation in format AMSBIB
\Bibitem{BugVolKar21}
\by D.~I.~Bugaenko, A.~A.~Volkov, A.~V.~Karchava, M.~A.~Yurovskaya
\paper Generation of aryl radicals by redox processes. Recent progress in the arylation methodology
\jour Russian Chem. Reviews
\yr 2021
\vol 90
\issue 1
\pages 116--170
\mathnet{http://mi.mathnet.ru/eng/rcr4329}
\crossref{https://doi.org/10.1070/RCR4959}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021RuCRv..90..116B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614608600005}
\elib{https://elibrary.ru/item.asp?id=46753243}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101527921}
Linking options:
  • https://www.mathnet.ru/eng/rcr4329
  • https://doi.org/10.1070/RCR4959
  • https://www.mathnet.ru/eng/rcr/v90/i1/p116
  • This publication is cited in the following 21 articles:
    1. Alexey A. Volkov, Dmitry I. Bugaenko, Alexander V. Karchava, ChemCatChem, 2024  crossref
    2. Alexey A. Volkov, Dmitry I. Bugaenko, Alexander V. Karchava, Adv Synth Catal, 366:3 (2024), 457  crossref
    3. Olga A. Tikhanova, Dmitry I. Bugaenko, Alexander V. Karchava, Adv Synth Catal, 366:7 (2024), 1467  crossref
    4. Anupam Das, K. R. Justin Thomas, Chemistry A European J, 30:31 (2024)  crossref
    5. Xiao-Qing Xie, Wei Zhou, Ruchun Yang, Xian-Rong Song, Mu-Jia Luo, Qiang Xiao, Org. Chem. Front., 11:15 (2024), 4318  crossref
    6. Xiaobo Dang, Zhixuan Li, Jinlong Shang, Chenyang Zhang, Chao Wang, Zhaoqing Xu, Angew Chem Int Ed, 2024  crossref
    7. Xiaobo Dang, Zhixuan Li, Jinlong Shang, Chenyang Zhang, Chao Wang, Zhaoqing Xu, Angewandte Chemie, 136:39 (2024)  crossref
    8. Xiaobao Zeng, Chemistry A European J, 2024  crossref
    9. Yiyi Chen, Qisheng Chen, Shuangquan Zhang, Kun Feng, Yuan-Qing Xu, Xiaohui Chen, Zhong-Yan Cao, Xianqiang Kong, Org. Lett., 26:36 (2024), 7555  crossref
    10. Krzysztof Grudzień, Andrei Zlobin, Jan Zadworny, Katarzyna Rybicka-Jasińska, Bartłomiej Sadowski, Org. Chem. Front., 11:18 (2024), 5232  crossref
    11. Jia‐Lin Tu, Zhengjia Shen, Binbin Huang, Adv Synth Catal, 2024  crossref
    12. Chuyun Liang, Shuzhong Wang, Yunhao Xue, Xingyao He, Jialiang Qin, Ruoting Zhan, Bo Liu, Huicai Huang, Org. Lett., 2024  crossref
    13. Daniela de Luna Martins, Nayane Abreu do Amaral e Silva, Noemi de Jesus Hiller, Fernando de Carvalho da Silva, Vitor Francisco Ferreira, Eur J Org Chem, 2024  crossref
    14. D. I. Bugaenko, A. V. Karchava, Adv. Synth. Catal., 365:11 (2023), 1893  crossref
    15. A. A. Gladkov, V. V. Levin, A. D. Dilman, Adv. Synth. Catal., 365:19 (2023), 3387  crossref
    16. P. Meher, S. P. Panda, S. K. Mahapatra, K. R. Thombare, L. Roy, S. Murarka, Org. Lett., 25:46 (2023), 8290  crossref
    17. A. Mukherjee, S. Mahato, D. S. Kopchuk, S. Santra, G. V. Zyryanov, A. Majee, O. N. Chupakhin, Russian Chem. Reviews, 92:3 (2023), RCR5046  mathnet  mathnet  crossref  scopus
    18. A. A. Volkov, D. I. Bugaenko, A. V. Bogdanov, A. V. Karchava, J. Org. Chem., 87:12 (2022), 8170  crossref
    19. L. Lombardi, A. Kovtun, S. Mantovani, G. Bertuzzi, L. Favaretto, C. Bettini, V. Palermo, M. Melucci, M. Bandini, Chemistry A European J., 28:26 (2022)  crossref
    20. D. I. Bugaenko, A. V. Karchava, M. A. Yurovskaya, Russ. Chem. Rev., 91:6 (2022), RCR5022  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uspekhi Khimii Uspekhi Khimii
    Statistics & downloads:
    Abstract page:124
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025