Loading [MathJax]/jax/output/SVG/config.js
Russian Chemical Reviews
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Usp. Khim.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Chemical Reviews, 2019, Volume 88, Issue 7, Pages 677–716
DOI: https://doi.org/10.1070/RCR4866
(Mi rcr4257)
 

This article is cited in 19 scientific papers (total in 19 papers)

Quantum chemical methods in charge density studies from X-ray diffraction data

A. A. Korlyukovab, Yu. V. Nelyubinaa

a A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow
b Russian National Research Medical University named after N. I. Pirogov
Abstract: Single-crystal X-ray diffraction studies are among the best experimental methods for elucidating the structure of chemical compounds. Recently, their focus has been shifted towards extracting information on chemical bonding features and related valuable properties of these compounds from the analysis of charge density distribution obtained in high-resolution X-ray diffraction experiments; the latter are possible only for a limited number of well-ordered crystals of small molecules. In this review, the hybrid approaches are described that introduce quantum chemical methods into the refinement of X-ray diffraction data. Their use significantly extends the range of systems suitable for charge density studies (such as polypeptides, metal-organic frameworks, inclusion compounds and others) and the scope of problems that they solve, viz., from protein structure refinement to determination of thermodynamic or other wave function-derived properties of crystals. The potential of these hybrid approaches and prospects for their future applications are discussed.
Funding agency Grant number
Russian Foundation for Basic Research 16-03-00691
Received: 10.10.2018
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: A. A. Korlyukov, Yu. V. Nelyubina, “Quantum chemical methods in charge density studies from X-ray diffraction data”, Russian Chem. Reviews, 88:7 (2019), 677–716
Citation in format AMSBIB
\Bibitem{KorNel19}
\by A.~A.~Korlyukov, Yu.~V.~Nelyubina
\paper Quantum chemical methods in charge density studies from X-ray diffraction data
\jour Russian Chem. Reviews
\yr 2019
\vol 88
\issue 7
\pages 677--716
\mathnet{http://mi.mathnet.ru/eng/rcr4257}
\crossref{https://doi.org/10.1070/RCR4866}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuCRv..88..677K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000473477300001}
\elib{https://elibrary.ru/item.asp?id=38203458}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071075830}
Linking options:
  • https://www.mathnet.ru/eng/rcr4257
  • https://doi.org/10.1070/RCR4866
  • https://www.mathnet.ru/eng/rcr/v88/i7/p677
  • This publication is cited in the following 19 articles:
    1. Anna V. Vologzhanina, Struct Chem, 2024  crossref
    2. R. Gajda, D. M. Tchoń, A. Maka, Crystal Growth & Design, 23:2 (2023), 862  crossref
    3. A. Rodionov, A. Korlyukov, A. Simenel, J. Mol. Struct., 1251 (2022), 132070  crossref  isi
    4. A. Ishchenko, A. Pak, Yu. Nelyubina, Russ. J. Coord. Chem., 48:1 (2022), 16–25  crossref  isi  scopus
    5. A. G. Medvedev, A. V. Churakov, M. A. Navasardyan, P. V. Prikhodchenko, O. Lev, M. V. Vener, Molecules, 27:13 (2022), 4082  crossref
    6. A. S. Soldatenko, I. V. Sterkhova, N. F. Lazareva, Russ. Chem. Bull., 71:2 (2022), 354  crossref
    7. G. K. Fukin, A. V. Cherkasov, R. V. Rumyantcev, Mendeleev Communications, 32:2 (2022), 202  crossref
    8. A. G. Medvedev, A. V. Churakov, P. V. Prikhodchenko, O. Lev, M. V. Vener, Molecules, 26:1 (2021), 26  crossref  isi  scopus
    9. I. Svitanko, V. S. Stroylov, I. Yu. Titov, P. V. Rusina, Russ. Chem. Rev., 90:7 (2021), 831–867  mathnet  crossref  isi
    10. Yu. V. Nelyubina, V. V. Novikov, Russ. Chem. Rev., 90:10 (2021), 1330–1358  mathnet  crossref  isi
    11. I. L. Eremenko, F. M. Dolgushin, Russ. Chem. Rev., 90:12 (2021), 1493–1519  mathnet  crossref  isi
    12. A. F. Smol'yakov, Yu. V. Nelyubina, Russ. J. Coord. Chem., 47:1 (2021), 26–31  crossref  isi
    13. A. O. Surov, N. A. Vasilev, A. V. Churakov, O. D. Parashchuk, S. V. Artobolevskii, O. A. Alatortsev, D. E. Makhrov, M. V. Vener, Symmetry-Basel, 13:3 (2021), 425  crossref  isi
    14. L. A. Malaspina, A. Genoni, S. Grabowsky, J. Appl. Crystallogr., 54:3 (2021), 987–995  crossref  isi
    15. V. Milasinovic, K. Molcanov, A. Krawczuk, N. E. Bogdanov, B. A. Zakharov, E. V. Boldyreva, Ch. Jelsch, B. Kojic-Prodic, IUCrJ, 8:4 (2021), 644–654  crossref  isi
    16. A. V. Vologzhanina, P. A. Buikin, A. A. Korlyukov, Crystengcomm, 22:43 (2020), 7361–7370  crossref  isi
    17. L. B. Krivdin, Russ. Chem. Rev., 89:4 (2020), 449–468  mathnet  crossref  isi
    18. A. A. Korlyukov, A. V. Vologzhanina, D. Trzybinski, M. Malinska, K. Wozniak, Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat., 76:6 (2020), 1018–1026  crossref  isi  scopus
    19. Simon Grabowsky, Alessandro Genoni, Sajesh P. Thomas, Dylan Jayatilaka, Structure and Bonding, 186, 21st Century Challenges in Chemical Crystallography II, 2020, 65  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uspekhi Khimii Uspekhi Khimii
    Statistics & downloads:
    Abstract page:184
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025