Abstract:
Metal-organic frameworks comprise a class of crystalline porous coordination polymers with unique chemical and physical properties. On the one hand, due to high specific surface area, biocompatibility and stability in biological media, framework materials are ideal candidates for the development of new dosage forms, in particular, for drug delivery systems. On the other hand, the modular structure of frameworks provides an opportunity for computational screening and predictive calculations. This opens new prospects for the design of modern functional materials. The computational screening and simulation of adsorption–desorption processes play a key role in the development of drug delivery systems, as they provide data that are difficult to obtain solely from experiments. These data can greatly assist in the development of drug delivery systems. The first part of the review gives a brief overview of the metal-organic frameworks which have already proved to be potential drug carriers as well as frameworks which are currently being extensively studied and gain attention in this area. The second part addresses the concept of rational design and computer-aided design of such systems. The bibliography includes 216 references.
Citation:
A. A. Simagina, M. V. Polynski, A. V. Vinogradov, E. A. Pidko, “Towards rational design of metal-organic framework-based drug delivery systems”, Russian Chem. Reviews, 87:9 (2018), 831–858
\Bibitem{SimPolVin18}
\by A.~A.~Simagina, M.~V.~Polynski, A.~V.~Vinogradov, E.~A.~Pidko
\paper Towards rational design of metal-organic framework-based drug delivery systems
\jour Russian Chem. Reviews
\yr 2018
\vol 87
\issue 9
\pages 831--858
\mathnet{http://mi.mathnet.ru/eng/rcr4231}
\crossref{https://doi.org/10.1070/RCR4797}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RuCRv..87..831S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443383600002}
\elib{https://elibrary.ru/item.asp?id=35268634}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052878886}
Linking options:
https://www.mathnet.ru/eng/rcr4231
https://doi.org/10.1070/RCR4797
https://www.mathnet.ru/eng/rcr/v87/i9/p831
This publication is cited in the following 25 articles:
A. Shamloo, T. Naseri, A. Rahbary, M. Ali Bakhtiari, S. Ebrahimi, I. Mirafzal, Sci. Rep., 13:1 (2023)
M. Ernst, J. D. Evans, G. Gryn'ova, Chemical Physics Reviews, 4:4 (2023)
A. Galarda, J. Goscianska, Applied Sciences, 13:23 (2023), 12960
M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Yu. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Yu. Yu. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Yu. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Yu. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Yu. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shul′gin, E. S. Shutova, D. G. Yakhvarov, J. Struct. Chem., 63:5 (2022), 671
E. S. Delyagina, M. A. Agafonov, A. A. Garibyan, I. V. Terekhova, Russ. J. Phys. Chem., 96:8 (2022), 1687
R. C. Alves, Z. M. Schulte, M. T. Luiz, P. B. da Silva, R. C. G. Frem, N. L. Rosi, M. Chorilli, Inorg. Chem., 60:16 (2021), 11739–11744
V. G. Vegas, A. Latorre, M. Luisa Marcos, C. J. Gomez-Garcia, O. Castillo, F. Zamora, J. Gomez, J. Martinez-Costas, M. Vazquez Lopez, A. Somoza, P. Amo-Ochoa, ACS Appl. Mater. Interfaces, 13:31 (2021), 36948–36957
S. Javanbakht, M. Nabi, M. Shadi, M. M. Amini, A. Shaabani, Int. J. Biol. Macromol., 188 (2021), 811–819
S. M. Morozova, A. Sharsheeva, M. I. Morozov, A. V. Vinogradov, E. Hey-Hawkins, Coord. Chem. Rev., 431 (2021), 213682
V. V. Veselovsky, A. V. Lozanova, V. I. Isaeva, V. V. Chernyshev, Russ. Chem. Bull., 70:5 (2021), 874–879
A. Hashemzadeh, F. Amerizadeh, F. Asgharzadeh, M. Darroudi, A. Avan, S. M. Hassanian, M. Landarani, M. Khazaei, Toxicol. Appl. Pharmacol., 423 (2021), 115573
Sun X., Keywanlu M., Tayebee R., Appl. Organomet. Chem., 35:11 (2021), e6377
T.-T. Wang, J.-Y. Liu, R. Guo, J.-D. An, J.-Zh. Huo, Yu.-Yu. Liu, W. Shi, B. Ding, Molecules, 26:12 (2021), 3673
S. A. Sapchenko, M. O. Barsukova, T. V. Nokhrina, K. A. Kovalenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 69:3 (2020), 461–469
A. V. Smoloboehkin, A. S. Gazizov, N. M. Urgenishbay, A. S. Melyashova, A. R. Burilov, M. A. Pudovika, Russ. Chem. Bull., 69:2 (2020), 382–385
N. O. Druzhkov, I. N. Meshcheryakova, A. V. Cherkasov, A. V. Piskunov, Russ. Chem. Bull., 69:1 (2020), 49–60
L. S. Flores, R. I. Rosa, D. F. Assis, G. de Carvalho Gustavo Senra, K. Krambrock, R. Diniz, Ch. C. Correa, Polyhedron, 186 (2020), UNSP 114628
I. K. Rubtsova, S. N. Melnikov, M. A. Shmelev, S. A. Nikolaevskii, I. A. Yakushev, J. K. Voronina, E. D. Barabanova, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, Mendeleev Commun., 30:6 (2020), 722–724
M. J. Duncan, P. S. Wheatley, E. M. Coghill, S. M. Vornholt, S. J. Warrender, I. L. Megson, R. E. Morris, Mater. Adv., 1:7 (2020), 2509–2519