Russian Chemical Reviews
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Usp. Khim.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Chemical Reviews, 2018, Volume 87, Issue 9, Pages 831–858
DOI: https://doi.org/10.1070/RCR4797
(Mi rcr4231)
 

This article is cited in 25 scientific papers (total in 25 papers)

Towards rational design of metal-organic framework-based drug delivery systems

A. A. Simaginaa, M. V. Polynskia, A. V. Vinogradova, E. A. Pidkoab

a St. Petersburg National Research University of Information Technologies, Mechanics and Optics
b Delft University of Technology, the Netherlands
Abstract: Metal-organic frameworks comprise a class of crystalline porous coordination polymers with unique chemical and physical properties. On the one hand, due to high specific surface area, biocompatibility and stability in biological media, framework materials are ideal candidates for the development of new dosage forms, in particular, for drug delivery systems. On the other hand, the modular structure of frameworks provides an opportunity for computational screening and predictive calculations. This opens new prospects for the design of modern functional materials. The computational screening and simulation of adsorption–desorption processes play a key role in the development of drug delivery systems, as they provide data that are difficult to obtain solely from experiments. These data can greatly assist in the development of drug delivery systems. The first part of the review gives a brief overview of the metal-organic frameworks which have already proved to be potential drug carriers as well as frameworks which are currently being extensively studied and gain attention in this area. The second part addresses the concept of rational design and computer-aided design of such systems.
The bibliography includes 216 references.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.1706.2017/4.6
08-08
Received: 11.11.2017
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: A. A. Simagina, M. V. Polynski, A. V. Vinogradov, E. A. Pidko, “Towards rational design of metal-organic framework-based drug delivery systems”, Russian Chem. Reviews, 87:9 (2018), 831–858
Citation in format AMSBIB
\Bibitem{SimPolVin18}
\by A.~A.~Simagina, M.~V.~Polynski, A.~V.~Vinogradov, E.~A.~Pidko
\paper Towards rational design of metal-organic framework-based drug delivery systems
\jour Russian Chem. Reviews
\yr 2018
\vol 87
\issue 9
\pages 831--858
\mathnet{http://mi.mathnet.ru/eng/rcr4231}
\crossref{https://doi.org/10.1070/RCR4797}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RuCRv..87..831S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443383600002}
\elib{https://elibrary.ru/item.asp?id=35268634}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052878886}
Linking options:
  • https://www.mathnet.ru/eng/rcr4231
  • https://doi.org/10.1070/RCR4797
  • https://www.mathnet.ru/eng/rcr/v87/i9/p831
  • This publication is cited in the following 25 articles:
    1. A. Shamloo, T. Naseri, A. Rahbary, M. Ali Bakhtiari, S. Ebrahimi, I. Mirafzal, Sci. Rep., 13:1 (2023)  crossref
    2. M. Ernst, J. D. Evans, G. Gryn'ova, Chemical Physics Reviews, 4:4 (2023)  crossref
    3. A. Galarda, J. Goscianska, Applied Sciences, 13:23 (2023), 12960  crossref
    4. M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Yu. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Yu. Yu. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Yu. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Yu. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Yu. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shul′gin, E. S. Shutova, D. G. Yakhvarov, J. Struct. Chem., 63:5 (2022), 671  crossref
    5. E. S. Delyagina, M. A. Agafonov, A. A. Garibyan, I. V. Terekhova, Russ. J. Phys. Chem., 96:8 (2022), 1687  crossref
    6. R. C. Alves, Z. M. Schulte, M. T. Luiz, P. B. da Silva, R. C. G. Frem, N. L. Rosi, M. Chorilli, Inorg. Chem., 60:16 (2021), 11739–11744  crossref  isi
    7. V. G. Vegas, A. Latorre, M. Luisa Marcos, C. J. Gomez-Garcia, O. Castillo, F. Zamora, J. Gomez, J. Martinez-Costas, M. Vazquez Lopez, A. Somoza, P. Amo-Ochoa, ACS Appl. Mater. Interfaces, 13:31 (2021), 36948–36957  crossref  isi
    8. S. Javanbakht, M. Nabi, M. Shadi, M. M. Amini, A. Shaabani, Int. J. Biol. Macromol., 188 (2021), 811–819  crossref  isi  scopus
    9. S. M. Morozova, A. Sharsheeva, M. I. Morozov, A. V. Vinogradov, E. Hey-Hawkins, Coord. Chem. Rev., 431 (2021), 213682  crossref  isi
    10. V. V. Veselovsky, A. V. Lozanova, V. I. Isaeva, V. V. Chernyshev, Russ. Chem. Bull., 70:5 (2021), 874–879  crossref  isi
    11. A. Hashemzadeh, F. Amerizadeh, F. Asgharzadeh, M. Darroudi, A. Avan, S. M. Hassanian, M. Landarani, M. Khazaei, Toxicol. Appl. Pharmacol., 423 (2021), 115573  crossref  isi
    12. Sun X., Keywanlu M., Tayebee R., Appl. Organomet. Chem., 35:11 (2021), e6377  crossref  isi
    13. T.-T. Wang, J.-Y. Liu, R. Guo, J.-D. An, J.-Zh. Huo, Yu.-Yu. Liu, W. Shi, B. Ding, Molecules, 26:12 (2021), 3673  crossref  isi
    14. Xiaoliang Dou, Maryam Keywanlu, Reza Tayebee, Behnam Mahdavi, Journal of Molecular Liquids, 329 (2021), 115557  crossref
    15. S. A. Sapchenko, M. O. Barsukova, T. V. Nokhrina, K. A. Kovalenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 69:3 (2020), 461–469  crossref  isi  scopus
    16. A. V. Smoloboehkin, A. S. Gazizov, N. M. Urgenishbay, A. S. Melyashova, A. R. Burilov, M. A. Pudovika, Russ. Chem. Bull., 69:2 (2020), 382–385  crossref  isi  scopus
    17. N. O. Druzhkov, I. N. Meshcheryakova, A. V. Cherkasov, A. V. Piskunov, Russ. Chem. Bull., 69:1 (2020), 49–60  crossref  isi  scopus
    18. L. S. Flores, R. I. Rosa, D. F. Assis, G. de Carvalho Gustavo Senra, K. Krambrock, R. Diniz, Ch. C. Correa, Polyhedron, 186 (2020), UNSP 114628  crossref  isi  scopus
    19. I. K. Rubtsova, S. N. Melnikov, M. A. Shmelev, S. A. Nikolaevskii, I. A. Yakushev, J. K. Voronina, E. D. Barabanova, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, Mendeleev Commun., 30:6 (2020), 722–724  crossref  isi  scopus
    20. M. J. Duncan, P. S. Wheatley, E. M. Coghill, S. M. Vornholt, S. J. Warrender, I. L. Megson, R. E. Morris, Mater. Adv., 1:7 (2020), 2509–2519  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи химии Russian Chemical Reviews
    Statistics & downloads:
    Abstract page:166
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025