Processing math: 100%
Russian Chemical Reviews
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Usp. Khim.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Chemical Reviews, 2018, Volume 87, Issue 8, Pages 727–740
DOI: https://doi.org/10.1070/RCR4818
(Mi rcr4219)
 

This article is cited in 14 scientific papers (total in 14 papers)

Magnetic isotopes as a means to elucidate Earth and environmental chemistry

Anatoly L. Buchachenkoabcde

a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow
b Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region
c Science Center in Chernogolovka of the Russian Academy of Sciences, Chernogolovka, Moscow Region
d P. G. Demidov Yaroslavl State University
e Department of Chemistry, Lomonosov Moscow State University
Abstract: In Earth and environmental chemistry, magnetic isotopes provide a universal means to identify reaction mechanisms. Mass-independent fractionation of isotopes as a signature of a mechanism occurs by two ways: first, via the magnetic isotope effect (MIE), which is controlled by magnetic, or hyperfine, coupling between unpaired electrons and magnetic nuclei in paramagnetic species (particularly, in radicals), and, second, via the nuclear volume effect (NVE), which is induced by the volume difference between isotopic nuclei. The MIE is the dependence of the reaction rates on the nuclear magnetic moment of reactants and fractionates magnetic and nonmagnetic isotopes, whereas NVE fractionates isotopes with different nuclear volumes. Both effects, MIE and NVE, are supposed to coexist in condensed phases. A decisive test for their differentiation is illustrated by the example of radical pairs with mercury nuclei. Namely, if isotope fractionation is controlled by MIE, the ratio Δ201Hg/Δ199Hg is expected to be in the range of 1.05–1.25 for isotopic enrichment and 0.80–0.92 for depletion. If isotope fractionation is controlled by NVE, this ratio is estimated to be in the range of 0.50–0.62. In contrast to MIE-induced bidirectional fractionation controlled by the direction of coherent spin conversion of the radical pair (triplet–singlet or vice versa), the NVE induces unidirectional, universal isotope fractionation, which is almost independent of the reaction mechanism. In contrast to MIE which exhibits inversion of the fractionation sign depending on the spin multiplicity of reactants, NVE is incompatible with the inversion of the fractionation sign. The MIE is an unambiguous indicator of the radical mechanisms and dominates in chemical reactions, whereas NVE prevails in nonchemical processes. Chemical scenarios of MIE-induced oxygen, sulfur, iron, silicon, tin, mercury, germanium and uranium isotope fractionation in photostimulated and dark reactions are analyzed in terms of reaction mechanisms including reactions in living organisms. In conclusion, some restrictions, uncertainties and problems in Earth and environmental chemistry are discussed.
Bibliography — 92 references.
Funding agency Grant number
Russian Science Foundation 14-23-00018
Received: 05.03.2017
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: English
Citation: Anatoly L. Buchachenko, “Magnetic isotopes as a means to elucidate Earth and environmental chemistry”, Russian Chem. Reviews, 87:8 (2018), 727–740
Citation in format AMSBIB
\Bibitem{Buc18}
\by Anatoly~L.~Buchachenko
\paper Magnetic isotopes as a means to elucidate Earth and environmental chemistry
\jour Russian Chem. Reviews
\yr 2018
\vol 87
\issue 8
\pages 727--740
\mathnet{http://mi.mathnet.ru/eng/rcr4219}
\crossref{https://doi.org/10.1070/RCR4818}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RuCRv..87..727B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000440158400001}
\elib{https://elibrary.ru/item.asp?id=35268628}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051329038}
Linking options:
  • https://www.mathnet.ru/eng/rcr4219
  • https://doi.org/10.1070/RCR4818
  • https://www.mathnet.ru/eng/rcr/v87/i8/p727
  • This publication is cited in the following 14 articles:
    1. Jordon D. Hemingway, Mark Claire, Treatise on Geochemistry, 2025, 499  crossref
    2. Yusuke Fukami, Ryoko Ariizumi, Yuta Ijichi, Takeshi Ohno, Teruhiko Kashiwabara, Takazo Shibuya, Katsuhiko Suzuki, Takafumi Hirata, Proc. Natl. Acad. Sci. U.S.A., 121:17 (2024)  crossref
    3. Mang Lin, Mark H. Thiemens, Applied Geochemistry, 161 (2024), 105860  crossref
    4. Mang LIN, BMPG, 43:4 (2024), 734  crossref
    5. A. Bragagni, F. Wombacher, M. Kirchenbaur, N. Braukmüller, C. Münker, Geochimica et Cosmochimica Acta, 344 (2023), 40  crossref
    6. F. Robert, P. Reinhardt, R. Tartese, Chem. Phys., 540 (2021), 110970  crossref  isi
    7. M. H. Thiemens, M. Lin, Triple Oxygen Isotope Geochemistry, Rev. Mineral. Geochem., Reviews in Mineralogy & Geochemistry, 86, no. 1, eds. I. Bindeman, A. Pack, Mineralogical Soc Amer & Geochemical Soc, 2021, 35–95  crossref  isi
    8. M. F. Miller, J. R. Woodward, E. Bailey, M. H. Thiemens, P. F. McMillan, M. M. Grady, C. Kirk, Chem. Geol., 586 (2021), 120500  crossref  isi  scopus
    9. A. L. Buchachenko, D. A. Kuznetsov, Russ. J. Phys. Chem. B, 15:1 (2021), 1–11  crossref  isi
    10. E. Yu. Arkhangelskaya, N. Yu. Vorobyeva, S. V. Leonov, A. N. Osipov, A. L. Buchachenko, Russ. J. Phys. Chem. B, 14:2 (2020), 314–317  crossref  isi  scopus
    11. A. L. Buchachenko, A. A. Bukhvostov, K. V. Ermakov, D. A. Kuznetsov, Prog. Biophys. Mol. Biol., 155 (2020), 1–19  crossref  isi
    12. T. A. Jackson, J. Paleolimn., 61:4 (2019), 387–401  crossref  isi  scopus
    13. M. H. Thiemens, M. Lin, Angew. Chem.-Int. Edit., 58:21 (2019), 6826–6844  crossref  isi
    14. Mark H. Thiemens, Mang Lin, Angew. Chem., 131:21 (2019), 6898  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи химии Russian Chemical Reviews
    Statistics & downloads:
    Abstract page:258
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025