Processing math: 100%
Russian Chemical Reviews
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Usp. Khim.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Chemical Reviews, 2017, Volume 86, Issue 6, Pages 530–566
DOI: https://doi.org/10.1070/RCR4712
(Mi rcr4167)
 

This article is cited in 52 scientific papers (total in 52 papers)

Fullerene derivatives as nano-additives in polymer composites

A. V. Penkovaa, S. F. A. Acquahb, L. B. Piotrovskiyc, D. A. Markelovda, A. S. Semisalovaef, H. W. Krotob

a Saint Petersburg State University
b Florida State University
c Institute of Experimental Medicine, St. Petersburg
d St. Petersburg National Research University of Information Technologies, Mechanics and Optics
e Helmholtz-Zentrum Dresden–Rossendorf, Institute of Ion Beam Physics and Materials Research, Germany
f Faculty of Physics, Lomonosov Moscow State University
Abstract: Since their discovery, fullerenes have become one of the most recognizable molecules in science. The 'beautiful molecule' described by Harold W. Kroto has been subtly referenced in movie, and has adorned the covers of many science-based textbooks. The physical and chemical properties of fullerenes have generated a lot of interest in the science community with many opportunities to develop new avenues for scientific research. Difficulties in the commercial use of fullerenes (e.g., C60) have likely been due to issues with solubility. Fortunately, the situation has improved over the last decade with research into fullerene derivatives. Once modified, fullerenes may have applications in a variety of areas including medicine, drug delivery, optoelectronics and electrochemistry. The addition of low concentrations of carbon nanoparticles to polymer matrices may result in significant changes in the function of polymer-based composite materials. This review will highlight the applications of fullerene derivatives as nano-additives for polymer composites. Various fullerene derivatives, viz., water-soluble carbon nanoclusters modified with hydroxyl and carboxyl groups, as well as hydrophobic fullerenes (metallofullerenes and methanofullerenes) will be evaluated in regard to their potential impact on commercial applications, in particular, photovoltaic devices, fuel cells, membrane technology and biocompatible electroactive actuators. We, members of Harold W. Kroto's research group in Florida and international collaborators, miss his exuberance and passion for engaging with young researchers, and we stand committed to preserving his legacy of science and outreach.
The bibliography includes 387 references.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation СП-1153.2015.1
074-U01
Russian Foundation for Basic Research 15-58-04034
Marie Sklodowska-Curie Actions 269138
Received: 24.11.2016
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: A. V. Penkova, S. F. A. Acquah, L. B. Piotrovskiy, D. A. Markelov, A. S. Semisalova, H. W. Kroto, “Fullerene derivatives as nano-additives in polymer composites”, Russian Chem. Reviews, 86:6 (2017), 530–566
Citation in format AMSBIB
\Bibitem{PenAcqPio17}
\by A.~V.~Penkova, S.~F.~A.~Acquah, L.~B.~Piotrovskiy, D.~A.~Markelov, A.~S.~Semisalova, H.~W.~Kroto
\paper Fullerene derivatives as nano-additives in polymer composites
\jour Russian Chem. Reviews
\yr 2017
\vol 86
\issue 6
\pages 530--566
\mathnet{http://mi.mathnet.ru/eng/rcr4167}
\crossref{https://doi.org/10.1070/RCR4712}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017RuCRv..86..530P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404957500004}
\elib{https://elibrary.ru/item.asp?id=29118473}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021421262}
Linking options:
  • https://www.mathnet.ru/eng/rcr4167
  • https://doi.org/10.1070/RCR4712
  • https://www.mathnet.ru/eng/rcr/v86/i6/p530
  • This publication is cited in the following 52 articles:
    1. Ayesha Kausar, Polymer-Plastics Technology and Materials, 2025, 1  crossref
    2. A.Yu. Yarysheva, A.V. Bolshakova, L.M. Yarysheva, O.V. Arzhakova, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 685 (2024), 133274  crossref
    3. Ayesha Kausar, Ishaq Ahmad, Journal of Thermoplastic Composite Materials, 2024  crossref
    4. Islam Saad, S.I. El-Dek, M.F. Eissa, Loïc Assaud, Mostafa R. Abukhadra, Wail Al Zoubi, Jee-Hyun Kang, Rafat M. Amin, Inorganic Chemistry Communications, 165 (2024), 112474  crossref
    5. Loutfy H. Madkour, Advances in Civil and Industrial Engineering, Emerging Engineering Technologies and Industrial Applications, 2024, 97  crossref
    6. Neda Ahadi, Omid Bakhtiari, Journal of the Taiwan Institute of Chemical Engineers, 165 (2024), 105790  crossref
    7. Elizaveta A. Nikitina, Sergio T. A. Barragan, Victoria M. Kapralova, Nikolay T. Sudar, 2024 International Conference on Electrical Engineering and Photonics (EExPolytech), 2024, 347  crossref
    8. Ayesha Kausar, Polymer/Fullerene Nanocomposites, 2023, 43  crossref
    9. Esmaeal Ghavanloo, Hashem Rafii-Tabar, Ayesha Kausar, Georgios I. Giannopoulos, S. Ahmad Fazelzadeh, Physics Reports, 996 (2023), 1  crossref
    10. Tabe N. Ntui, Hitler Louis, Bartholomew B. Isang, Anna Imojara, Ismail O. Amodu, Innocent Benjamin, Ayodele Akinterinwa, Adedapo S. Adeyinka, Journal of the Indian Chemical Society, 100:3 (2023), 100940  crossref
    11. Zhiyong Zhao, Saunak Das, Michael Zharnikov, ACS Appl. Nano Mater., 6:3 (2023), 2151  crossref
    12. Cristina Buzea, Ivan Pacheco, Polymer/Fullerene Nanocomposites, 2023, 211  crossref
    13. B. Ezdin, S. Vasiljev, D. Yatsenko, V. Fedorov, M. Ivanova, V. Kalyada, Yu. Pakharukov, F. Shabiev, A. Zarvin, Tech. Phys., 68:1 (2023), 18  crossref
    14. Nikolai P. Bityutskii, Kirill L. Yakkonen, Yulia M. Napolskikh, Danil Pampur, Gleb O. Yuriev, Konstantin N. Semenov, Dmitry G. Letenko, Plant Physiology and Biochemistry, 204 (2023), 108095  crossref
    15. Saran S. Kumar, Aiswarya Lakshmi, Anju Murali, Haridev M, Krishna Priya R C, Moumita Gangopadhyay, Appukuttan Saritha, ACS Symposium Series, 1458, Antibacterial and Antiviral Functional Materials, Volume 1, 2023, 327  crossref
    16. N. Kamely, J. Electron. Mater., 51:3 (2022), 953–965  crossref  isi
    17. A. Kuzminova, M. Dmitrenko, A. Zolotarev, A. Korniak, D. Poloneeva, A. Selyutin, A. Emeline, A. Yushkin, A. Foster, P. Budd, S. Ermakov, Membranes, 12:1 (2022), 14  crossref  isi
    18. M. Dmitrenko, A. Chepeleva, V. Liamin, A. Mazur, K. Semenov, N. Solovyev, A. Penkova, Polymers, 14:4 (2022), 691  crossref  isi
    19. V. I. Borodin, A. M. Bubenchikov, M. A. Bubenchikov, V. A. Ovchinnikov, A. S. Chelnokova, Crystals, 12:11 (2022), 1653  crossref
    20. Ch. R. Ashman, S. Halilov, J. Phys. Chem. A, 126:10 (2022), 1605  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи химии Russian Chemical Reviews
    Statistics & downloads:
    Abstract page:778
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025