Abstract:
The review deals with the results of theoretical modelling of the structures and properties of actinide and lanthanide complexes with donor organic ligands used as selective extractants for separation of these elements in liquid high-level waste processing in the nuclear fuel cycle. The advantages and drawbacks of various types of ligands are discussed, including phosphinodithioic acids, tri- and polydentate ligands with $\mathrm O$-donor centres, ligands based on $\mathrm N$-heterocycles with softer $\mathrm N$-donor centres and amides of $\mathrm N$-heterocyclic carboxylic acids, which contain both types of donor atoms. A critical analysis of the potential of modern quantum chemistry methods in establishing structure–extraction behaviour relationships for various types of ligands is presented.
The bibliography includes 119 references.
Citation:
Yu. A. Ustynyuk, M. Yu. Alyapyshev, V. A. Babain, N. A. Ustynyuk, “Quantum chemical modelling of extraction separation of minor actinides and lanthanides: the state of the art”, Russian Chem. Reviews, 85:9 (2016), 917–942
\Bibitem{UstAlyBab16}
\by Yu.~A.~Ustynyuk, M.~Yu.~Alyapyshev, V.~A.~Babain, N.~A.~Ustynyuk
\paper Quantum chemical modelling of extraction separation of minor actinides and lanthanides: the state of the art
\jour Russian Chem. Reviews
\yr 2016
\vol 85
\issue 9
\pages 917--942
\mathnet{http://mi.mathnet.ru/eng/rcr4127}
\crossref{https://doi.org/10.1070/RCR4588}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016RuCRv..85..917U}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391301900003}
\elib{https://elibrary.ru/item.asp?id=26719828}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989916224}
Linking options:
https://www.mathnet.ru/eng/rcr4127
https://doi.org/10.1070/RCR4588
https://www.mathnet.ru/eng/rcr/v85/i9/p917
This publication is cited in the following 61 articles:
Cheriyan Ebenezer, R. Vijay Solomon, Comments on Inorganic Chemistry, 2024, 1
Kevin Leung, Anastasia G. Ilgen, Phys. Chem. Chem. Phys., 2024
A. N. Turanov, V. K. Karandashev, E. I. Goryunov, I. B. Goryunova, V. K. Brel, Russ. J. Inorg. Chem., 2024
A. N. Turanov, V. K. Karandashev, V. E. Baulin, D. V. Baulin, Radiochemistry, 66:4 (2024), 438
Serafima S. Slobodskaia, Galina S. Tsebrikova, Vitaly P. Solov'ev, Irina S. Ivanova, Elena N. Pyatova, Vladimir E. Baulin, Alfiya M. Safiulina, Aslan Yu. Tsivadze, Dalton Trans., 2024
A. N. Turanov, V. K. Karandashev, O. I. Artyushin, E. V. Sharova, Žurnal obŝej himii, 94:6 (2024), 766
Yichen Huang, Changming Nie, Congzhi Wang, Shusen Chen, Yan Song, Hao Li, Weiqun Shi, Acta Chimica Sinica, 82:10 (2024), 1050
Thomas J. Summers, Michael G. Taylor, Logan J. Augustine, Jan Janssen, Danny Perez, Enrique R. Batista, Ping Yang, JACS Au, 2024
A. N. Turanov, V. K. Karandashev, A. V. Kharlamov, N. A. Bondarenko, Russ. J. Inorg. Chem., 2024
A. N. Turanov, V. K. Karandashev, Radiochemistry, 66:5 (2024), 633
S. V. Gutorova, M. V. Logunov, Yu. A. Voroshilov, V. A. Babain, A. Yu. Shadrin, S. V. Podoynitsyn, O. V. Kharitonov, L. A. Firsova, E. A. Kozlitin, Yu. A. Ustynyuk, P. S. Lemport, V. G. Nenajdenko, A. V. Voronina, V. A. Volkovich, I. B. Polovov, K. N. Dvoeglazov, Yu. S. Mochalov, V. L. Vidanov, V. A. Kascheev, Yu. P. Zaikov, V. A. Kovrov, A. S. Holkina, D. Yu. Suntsov, E. D. Filimonova, O. V. Shmidt, V. I. Volk, A. B. Melentev, K. K. Korchenkin, K. E. German, Yu. A. Pokhitonov, I. G. Tananaev, E. Yu. Pavlyukevich, O. A. Bagautdinova, V. N. Alekseenko, L. N. Podrezova, V. V. Milyutin, N. A. Nekrasova, V. O. Kaptakov, L. I. Tkachenko, S. N. Kalmykov, Russ J Gen Chem, 94:S2 (2024), S243
A. N. Turanov, V. K. Karandashev, G. V. Kostikova, A. M. Fedoseev, Radiochemistry, 65:1 (2023), 39
Vitaly Solov’Ev, Aslan Tsivadze, Comments on Inorganic Chemistry, 43:1 (2023), 16