Loading [MathJax]/jax/output/SVG/config.js
Russian Chemical Reviews
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Usp. Khim.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Chemical Reviews, 2012, Volume 81, Issue 5, Pages 435–457
DOI: https://doi.org/10.1070/RC2012v081n05ABEH004288
(Mi rcr21)
 

This article is cited in 45 scientific papers (total in 45 papers)

Capturing CO2: conventional versus ionic-liquid based technologies

E. I. Privalovaa, P. Mäki-Arvelaa, D. Yu. Murzina, J. P. Mikkholaab

a Åbo Akademi University
b Umeå University
Abstract: Since CO2 facilitates pipeline corrosion and contributes to a decrease of the calorific value of gaseous fuels, its removal has become an issue of significant economic importance. The present review discusses various types of traditional CO2 capture technologies in terms of their efficiency, complexity in system design, costs and environmental impact. The focus is hereby not only on conventional approaches but also on emerging "green" solvents such as ionic liquids. The suitability of different ionic liquids as gas separation solvents is discussed in the present review and a description on their synthesis and properties in terms of CO2 capture is provided. The bibliography includes 136 references.
Received: 11.11.2011
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian


Citation: E. I. Privalova, P. Mäki-Arvela, D. Yu. Murzin, J. P. Mikkhola, “Capturing CO2: conventional versus ionic-liquid based technologies”, Usp. Khim., 81:5 (2012), 435–457; Russian Chem. Reviews, 81:5 (2012), 435–457
Linking options:
  • https://www.mathnet.ru/eng/rcr21
  • https://doi.org/10.1070/RC2012v081n05ABEH004288
  • https://www.mathnet.ru/eng/rcr/v81/i5/p435
  • This publication is cited in the following 45 articles:
    1. Saleem Nawaz Khan, Faheem Abbas, Francis M. Enujekwu, Sami Ullah, Mohammed Ali Assiri, Abdullah G. Al-Sehemi, Journal of Molecular Liquids, 394 (2024), 123725  crossref
    2. Daili Peng, Francesco Picchioni, Journal of Ionic Liquids, 4:1 (2024), 100088  crossref
    3. Wenjia Luo, Duo Hou, Peng Guan, Fei Li, Changzheng Wang, Huan Li, Xi Zhang, Guoxian Huang, Xingwu Lu, Yanlong Li, Tao Zhou, Separation and Purification Technology, 340 (2024), 126744  crossref
    4. Guilherme Dias, Laura Rocca, Henrique Z. Ferrari, Franciele L. Bernard, Fernando G. Brandão, Leonardo Pereira, Sandra Einloft, Membranes, 14:7 (2024), 151  crossref
    5. Daryayehsalameh B., Nabavi M., Vaferi B., Environ. Technol. Innov., 22 (2021), 101484  crossref  isi
    6. Mazari Sh.A., Siyal A.R., Solangi N.H., Ahmed S., Griffin G., Abro R., Mubarak N.M., Ahmed M., Sabzoi N., J. Mol. Liq., 327 (2021), 114785  crossref  isi
    7. Franciele L. Bernard, Evandro A. Duarte, Barbara B. Polesso, Rafael B. Duczinski, Sandra Einloft, Environmental Challenges, 4 (2021), 100109  crossref
    8. Alastair James Ward, Lu Feng, Henrik Bjarne Møller, Emerging Technologies and Biological Systems for Biogas Upgrading, 2021, 29  crossref
    9. Qyyum M.A., Haider J., Qadeer K., Valentina V., Khan A., Yasin M., Aslam M., De Guido G., Pellegrini L.A., Lee M., Renew. Sust. Energ. Rev., 119 (2020), 109561  crossref  isi  scopus
    10. Zhou Y., Chang M., Zang X., Zheng L., Wang Yu., Wu L., Han X., Chen Yu., Yu Yu., Zhang Z., Polym. Test, 81 (2020), 106109  crossref  isi  scopus
    11. dos Santos L.M., Bernard F.L., Polesso B.B., Pinto I.S., Frankenberg C.C., Corvo M.C., Almeida P.L., Cabrita E., Einloft S., J. Environ. Manage., 268 (2020), 110340  crossref  isi  scopus
    12. Duczinski R., Polesso B.B., Bernard F.L., Ferrari H.Z., Almeida P.L., Corvo M.C., Cabrita E.J., Menezes S., Einloft S., J. Environ. Chem. Eng., 8:3 (2020), UNSP 103740  crossref  isi  scopus
    13. Sandra Einloft, Franciele Longaray Bernard, Advances in Carbon Capture, 2020, 125  crossref
    14. Bernard F.L., dos Santos L.M., Schwab M.B., Polesso B.B., do Nascimento J.F., Einloft S., J. Appl. Polym. Sci., 136:20 (2019), 47536  crossref  isi  scopus
    15. Kazmi B., Haider J., Qyyum M.A., Saeed S., Kazmi M.R., Lee M., Int. J. Greenh. Gas Control, 87 (2019), 89–99  crossref  isi  scopus
    16. dos Santos L.M., Bernard F.L., Pinto I.S., Scholer H., Dias G.G., Prado M., Einloft S., Mater. Res.-Ibero-am. J. Mater., 22:1 (2019), UNSP e20190022  crossref  isi  scopus
    17. Bernard F.L., dos Santos L.M., Cobalchina F.W., Schwab M.B., Einloft S., Mater. Res.-Ibero-am. J. Mater., 22:1 (2019), e20180827  crossref  isi  scopus
    18. K Mulia, E Krisanti, Nasruddin, E Libriandy, J. Phys.: Conf. Ser., 1295:1 (2019), 012039  crossref
    19. Yingying Zhang, Xiaohua Lu, Xiaoyan Ji, Deep Eutectic Solvents, 2019, 297  crossref
    20. Zhang Y., Ji X., Xie Yu., Lu X., Appl. Energy, 217 (2018), 75–87  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи химии Russian Chemical Reviews
    Statistics & downloads:
    Abstract page:702
    Full-text PDF :1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025