Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1997, Volume 2, Issue 3-4, Pages 30–40
DOI: https://doi.org/10.1070/RD1997v002n03ABEH000045
(Mi rcd994)
 

On the 60th birthday of V.I.Arnold

Invariant tori of intermediate dimensions in Hamiltonian systems

M. B. Sevryuk

117829, Russia, Moscow, V-334, GSP-1, Leninsky Prospect, 38, building. 2, Institute for Energy Problems of Chemical Physics RAS
Abstract: In the present paper, we survey recent results on the existence and the structure of Cantor families of invariant tori of dimensions $p>n$ in a neighborhood of families of invariant $n$-tori in Hamiltonian systems with $d \geqslant p$ degrees of freedom.
Received: 15.07.1997
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. B. Sevryuk, “Invariant tori of intermediate dimensions in Hamiltonian systems”, Regul. Chaotic Dyn., 2:3-4 (1997), 30–40
Citation in format AMSBIB
\Bibitem{Sev97}
\by M.~B.~Sevryuk
\paper Invariant tori of intermediate dimensions in Hamiltonian systems
\jour Regul. Chaotic Dyn.
\yr 1997
\vol 2
\issue 3-4
\pages 30--40
\mathnet{http://mi.mathnet.ru/rcd994}
\crossref{https://doi.org/10.1070/RD1997v002n03ABEH000045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1702337}
\zmath{https://zbmath.org/?q=an:0922.58032}
Linking options:
  • https://www.mathnet.ru/eng/rcd994
  • https://www.mathnet.ru/eng/rcd/v2/i3/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024