Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1998, Volume 3, Issue 4, Pages 3–26
DOI: https://doi.org/10.1070/RD1998v003n04ABEH000089
(Mi rcd957)
 

This article is cited in 10 scientific papers (total in 10 papers)

Elliptic Periodic Orbits Near a Homoclinic Tangency in Four-Dimensional Symplectic Maps and Hamiltonian Systems With Three Degrees of Freedom

S. V. Gonchenkoa, L. P. Shilnikova, D. V. Turaevb

a Institute for Applied mathematics and Cybernetics, 10 Ul'ianov Str., Nizhniy Novgorod, 603005, Russia
b Weierstrass-Institut für Angewandte Analysis und Stochastik, Mohrenstrasse 39, D-10117, Berlin
Citations (10)
Abstract: We study bifurcations leading to the appearance of elliptic orbits in the case of four-dimensional symplectic diffeomorphisms (and Hamiltonian flows with three degrees of freedom) with a homoclinic tangency to a saddle-focus periodic orbit.
Received: 20.11.1998
Bibliographic databases:
Document Type: Article
MSC: 58F36
Language: English
Citation: S. V. Gonchenko, L. P. Shilnikov, D. V. Turaev, “Elliptic Periodic Orbits Near a Homoclinic Tangency in Four-Dimensional Symplectic Maps and Hamiltonian Systems With Three Degrees of Freedom”, Regul. Chaotic Dyn., 3:4 (1998), 3–26
Citation in format AMSBIB
\Bibitem{GonShiTur98}
\by S. V. Gonchenko, L. P. Shilnikov, D. V. Turaev
\paper Elliptic Periodic Orbits Near a Homoclinic Tangency in Four-Dimensional Symplectic Maps and Hamiltonian Systems With Three Degrees of Freedom
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 4
\pages 3--26
\mathnet{http://mi.mathnet.ru/rcd957}
\crossref{https://doi.org/10.1070/RD1998v003n04ABEH000089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1704979}
\zmath{https://zbmath.org/?q=an:0956.37048}
Linking options:
  • https://www.mathnet.ru/eng/rcd957
  • https://www.mathnet.ru/eng/rcd/v3/i4/p3
  • This publication is cited in the following 10 articles:
    1. Amadeu Delshams, Marina Gonchenko, Sergey Gonchenko, “On dynamics and bifurcations of area-preserving maps with homoclinic tangencies”, Nonlinearity, 28:9 (2015), 3027  crossref
    2. Amadeu Delshams, Marina Gonchenko, Sergey V. Gonchenko, “On Bifurcations of Area-preserving and Nonorientable Maps with Quadratic Homoclinic Tangencies”, Regul. Chaotic Dyn., 19:6 (2014), 702–717  mathnet  crossref  mathscinet  zmath
    3. S.V. Gonchenko, A.S. Gonchenko, I.I. Ovsyannikov, D.V. Turaev, L. Lerman, D. Turaev, V. Vougalter, M. Zaks, “Examples of Lorenz-like Attractors in Hénon-like Maps”, Math. Model. Nat. Phenom., 8:5 (2013), 48  crossref
    4. S. V. Gonchenko, V. S. Gonchenko, L. P. Shilnikov, “On a homoclinic origin of Hénon-like maps”, Regul. Chaotic Dyn., 15:4 (2010), 462–481  mathnet  crossref
    5. M. S. Gonchenko, S. V. Gonchenko, “On Cascades of Elliptic Periodic Points in Two-Dimensional Symplectic Maps with Homoclinic Tangencies”, Regul. Chaotic Dyn., 14:1 (2009), 116–136  mathnet  crossref
    6. A. Rapoport, V. Rom-Kedar, D. Turaev, “Stability in High Dimensional Steep Repelling Potentials”, Commun. Math. Phys., 279:2 (2008), 497  crossref
    7. S. V. Gonchenko, D. V. Turaev, L. P. Shilnikov, “Existence of Infinitely Many Elliptic Periodic Orbits in Four-Dimensional Symplectic Maps with a Homoclinic Tangency”, Proc. Steklov Inst. Math., 244 (2004), 106–131  mathnet  mathscinet  zmath
    8. Jeroen S W Lamb, Oleg V Stenkin, “Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits”, Nonlinearity, 17:4 (2004), 1217  crossref
    9. V. S. Gonchenko, “Homoclinic Tangencies, Ω-Moduli, and Bifurcations”, Proc. Steklov Inst. Math., 236 (2002), 94–109  mathnet  mathscinet  zmath
    10. S. V. Gonchenko, L. P. Shilnikov, “Hyperbolic properties of four-dimensional symplectic mappings with a structurally unstable trajectory homoclinic to a fixed point of the saddle-focus type”, Differ. Equ., 36:11 (2000), 1610–1620  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:151
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025