Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1998, Volume 3, Issue 3, Pages 132–160
DOI: https://doi.org/10.1070/RD1998v003n03ABEH000086
(Mi rcd954)
 

This article is cited in 16 scientific papers (total in 16 papers)

On the 70th birthday of J.Moser

A Lie algebraic generalization of the Mumford system, its symmetries and its multi-Hamiltonian structure

M. Pedronia, P. Vanhaeckebc

a Università di Genova, Dipartitnento di Matematica, Via, Dodecanese 35, 1-16146 Genova, Italy
b Université des Sciences et Technologies de Lille, U.F.R. de Mathématiques, 59655 Villeneuve d'Ascq Cedex, France
c University of California, 1015 Department of Mathematics, Davis, CA 95616-8633, USA
Citations (16)
Abstract: In this paper we generalize the Mumford system which describes for any fixed $g$ all linear flows on all hyperelliptic Jacobians of dimension $g$. The phase space of the Mumford system consists of triples of polynomials, subject to certain degree constraints, and is naturally seen as an affine subspace of the loop algebra of $\mathfrak{sl}(2)$. In our generalizations to an arbitrary simple Lie algebra $\mathfrak{g}$ the phase space consists of $\dim \mathfrak{g}$ polynomials, again subject to certain degree constraints. This phase space and its multi-Hamiltonian structure is obtained by a Poisson reduction along a subvariety $N$ of the loop algebra $\mathfrak{g} ((\lambda - 1))$ of $\mathfrak{g}$. Since $N$ is not a Poisson subvariety for the whole multi-Hamiltonian structure we prove an algebraic. Poisson reduction theorem for reduction along arbitrary subvarieties of an affine Poisson variety; this theorem is similar in spirit to the Marsden–Ratiu reduction theorem. We also give a different perspective on the multi-Hamiltonian structure of the Mumford system (and its generalizations) by introducing a master symmetry; this master symmetry can be described on the loop algebra $\mathfrak{g} ((\lambda -1))$ as the derivative in the direction of $\lambda$ and is shown to survive the Poisson reduction. When acting (as a Lie derivative) on one of the Poisson structures of the system it produces a next one, similarly when acting on one of the Hamiltonians (in involution) or their (commuting) vector fields it produces a next one. In this way we arrive at several multi-Hamiltonian hierarchies, built up by a master symmetry.
Received: 21.07.1998
Bibliographic databases:
Document Type: Article
MSC: 34A05, 58F05, 58F07
Language: English
Citation: M. Pedroni, P. Vanhaecke, “A Lie algebraic generalization of the Mumford system, its symmetries and its multi-Hamiltonian structure”, Regul. Chaotic Dyn., 3:3 (1998), 132–160
Citation in format AMSBIB
\Bibitem{PedVan98}
\by M. Pedroni, P.~Vanhaecke
\paper A Lie algebraic generalization of the Mumford system, its symmetries and its multi-Hamiltonian structure
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 3
\pages 132--160
\mathnet{http://mi.mathnet.ru/rcd954}
\crossref{https://doi.org/10.1070/RD1998v003n03ABEH000086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1704975}
\zmath{https://zbmath.org/?q=an:0964.37033}
Linking options:
  • https://www.mathnet.ru/eng/rcd954
  • https://www.mathnet.ru/eng/rcd/v3/i3/p132
  • This publication is cited in the following 16 articles:
    1. Fedorov Yu. Jovanovic B., “Continuous and Discrete Neumann Systems on Stiefel Varieties as Matrix Generalizations of the Jacobi-Mumford Systems”, Discret. Contin. Dyn. Syst., 41:6 (2021), 2559–2599  crossref  mathscinet  isi  scopus
    2. Skrypnyk T., “Separation of Variables, Lax-Integrable Systems and Gl(2) Circle Times Gl(2)-Valued Classical R-Matrices”, J. Geom. Phys., 155 (2020), 103733  crossref  mathscinet  zmath  isi  scopus
    3. Pantelis A. Damianou, Hervé Sabourin, Pol Vanhaecke, “Intermediate Toda Systems”, Regul. Chaotic Dyn., 20:3 (2015), 277–292  mathnet  crossref  mathscinet  zmath  adsnasa
    4. Rei Inoue, Pol Vanhaecke, Takao Yamazaki, “Algebraic integrable systems related to spectral curves with automorphisms”, Journal of Geometry and Physics, 87 (2015), 198  crossref
    5. Benjamin J. Wilson, “Highest-weight theory for truncated current Lie algebras”, Journal of Algebra, 336:1 (2011), 1  crossref
    6. Alexander Chervov, Gregorio Falqui, Leonid Rybnikov, “Limits of Gaudin Systems: Classical and Quantum Cases”, SIGMA, 5 (2009), 029, 17 pp.  mathnet  crossref  mathscinet  zmath
    7. Victor ENOLSKII, Shigeki MATSUTANI, Yoshihiro ÔNISHI, “The Addition Law Attached to a Stratification of a Hyperelliptic Jacobian Variety”, Tokyo J. Math., 31:1 (2008)  crossref
    8. Rei Inoue, Yukiko Konishi, “Multi-Hamiltonian Structures on Beauville's Integrable System and Its Variant”, SIGMA, 3 (2007), 007, 16 pp.  mathnet  crossref  mathscinet  zmath
    9. Gregorio Falqui, Fabio Musso, “On Separation of Variables for Homogeneous SL(r) Gaudin Systems”, Math Phys Anal Geom, 9:3 (2007), 233  crossref
    10. Rei Inoue, Yukiko Konishi, Takao Yamazaki, “Jacobian variety and integrable system — after Mumford, Beauville and Vanhaecke”, Journal of Geometry and Physics, 57:3 (2007), 815  crossref
    11. Ariane Le Blanc, “Quasi-Poisson structures and integrable systems related to the moduli space of flat connections on a punctured Riemann sphere”, Journal of Geometry and Physics, 57:8 (2007), 1631  crossref
    12. Paolo Casati, Giovanni Ortenzi, “New integrable hierarchies from vertex operator representations of polynomial Lie algebras”, Journal of Geometry and Physics, 56:3 (2006), 418  crossref
    13. Gregorio Falqui, Fabio Musso, “Gaudin models and bending flows: a geometrical point of view”, J. Phys. A: Math. Gen., 36:46 (2003), 11655  crossref
    14. Vadim Kuznetsov, Pol Vanhaecke, “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, Journal of Geometry and Physics, 44:1 (2002), 1  crossref
    15. Masoto Kimura, Pol Vanhaecke, “Commuting matrix differential operators and loop algebras”, Bulletin des Sciences Mathématiques, 125:5 (2001), 407  crossref
    16. G. Falqui, F. Magri, G. Tondo, “Reduction of bi-Hamiltonian systems and separation of variables: An example from the Boussinesq hierarchy”, Theoret. and Math. Phys., 122:2 (2000), 176–192  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:97
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025