Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1998, Volume 3, Issue 3, Pages 56–72
DOI: https://doi.org/10.1070/RD1998v003n03ABEH000080
(Mi rcd948)
 

This article is cited in 39 scientific papers (total in 39 papers)

On the 70th birthday of J.Moser

Nekhoroshev-stability of L4 and L5 in the spatial restricted three-body problem

G. Benettina, F. Fassòb, M. Guzzob

a Materia and Gruppo Naziotiale di Fisica Matematica (CNR), Istituto Nazionale di Fisica della, Dipartimento di Matematica Pura e Applicata, Via G. Belzoni 7, 35131 Padova, Italy
b Gruppo Naziotiale di Fisica Matematica (CNR.), Dipartimento di Matematica Pura e Applicata, Via G. Belzoni 7, 35131 Padova, Italy
Citations (39)
Abstract: We show that L4 and L5 in the spatial restricted circular three-body problem are Nekhoroshev-stable for all but a few values of the reduced mass up to the Routh critical value. This result is based on two extensions of previous results on Nekhoroshev-stability of elliptic equilibria, namely to the case of "directional quasi-convexity", a notion introduced here, and to a (non-convex) steep case. We verify that the hypotheses are satisfied for L4 and L5 by means of numerically constructed Birkhoff normal forms.
Received: 07.10.1998
Bibliographic databases:
Document Type: Article
MSC: 58F10, 58F36, 70F07
Language: English
Citation: G. Benettin, F. Fassò, M. Guzzo, “Nekhoroshev-stability of L4 and L5 in the spatial restricted three-body problem”, Regul. Chaotic Dyn., 3:3 (1998), 56–72
Citation in format AMSBIB
\Bibitem{BenFasGuz98}
\by G.~Benettin, F.~Fass\`o, M.~Guzzo
\paper Nekhoroshev-stability of $L_4$ and $L_5$ in the spatial restricted three-body problem
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 3
\pages 56--72
\mathnet{http://mi.mathnet.ru/rcd948}
\crossref{https://doi.org/10.1070/RD1998v003n03ABEH000080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1704969}
\zmath{https://zbmath.org/?q=an:0934.70010}
Linking options:
  • https://www.mathnet.ru/eng/rcd948
  • https://www.mathnet.ru/eng/rcd/v3/i3/p56
  • This publication is cited in the following 39 articles:
    1. Alessandra Celletti, Encyclopedia of Complexity and Systems Science, 2023, 1  crossref
    2. Alessandra Celletti, Encyclopedia of Complexity and Systems Science, 2022, 1  crossref
    3. Alessandra Celletti, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 339  crossref
    4. Rocío I. Paez, Massimiliano Guzzo, “On the semi-analytical construction of halo orbits and halo tubes in the elliptic restricted three-body problem”, Physica D: Nonlinear Phenomena, 439 (2022), 133402  crossref
    5. Àngel Jorba, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 153  crossref
    6. Àngel Jorba, Encyclopedia of Complexity and Systems Science, 2022, 1  crossref
    7. Carcamo-Diaz D., Palacian J.F., Vidal C., Yanguas P., “Nonlinear Stability of Elliptic Equilibria in Hamiltonian Systems With Exponential Time Estimates”, Discret. Contin. Dyn. Syst., 41:11 (2021), 5183–5208  crossref  mathscinet  isi  scopus
    8. Carcamo-Diaz D. Palacian J.F. Vidal C. Yanguas P., “Nonlinear Stability in the Spatial Attitude Motion of a Satellite in a Circular Orbit”, SIAM J. Appl. Dyn. Syst., 20:3 (2021), 1421–1463  crossref  mathscinet  isi  scopus
    9. Galgani L., “Foundations of Physics in Milan, Padua and Paris. Newtonian Trajectories From Celestial Mechanics to Atomic Physics”, Math. Eng., 3:6, SI (2021)  crossref  mathscinet  isi  scopus
    10. Daniela Cárcamo-Díaz, Jesús F. Palacián, Claudio Vidal, Patricia Yanguas, “On the Nonlinear Stability of the Triangular Points in the Circular Spatial Restricted Three-body Problem”, Regul. Chaotic Dyn., 25:2 (2020), 131–148  mathnet  crossref
    11. Bounemoura A., Fayad B., Niederman L., “Nekhoroshev Estimates For Steep Real-Analytic Elliptic Equilibrium Points”, Nonlinearity, 33:1 (2020), 1–33  crossref  mathscinet  zmath  isi  scopus
    12. Chierchia L., Faraggiana M.A., Guzzo M., “On Steepness of 3-Jet Non-Degenerate Functions”, Ann. Mat. Pura Appl., 198:6 (2019), 2151–2165  crossref  mathscinet  zmath  isi  scopus
    13. Tong Luo, Ming Xu, “Dynamics of the spatial restricted three-body problem stabilized by Hamiltonian structure-preserving control”, Nonlinear Dyn, 94:3 (2018), 1889  crossref
    14. Ram Kishor, Badam Singh Kushvah, “Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations”, Astrophys Space Sci, 362:9 (2017)  crossref
    15. Massimiliano Guzzo, Elena Lega, “The Nekhoroshev Theorem and the Observation of Long-term Diffusion in Hamiltonian Systems”, Regul. Chaotic Dyn., 21:6 (2016), 707–719  mathnet  crossref  mathscinet
    16. M. Guzzo, L. Chierchia, G. Benettin, “The Steep Nekhoroshev's Theorem”, Commun. Math. Phys., 342:2 (2016), 569  crossref
    17. Gabriella Schirinzi, Massimiliano Guzzo, “Numerical Verification of the Steepness of Three and Four Degrees of Freedom Hamiltonian Systems”, Regul. Chaotic Dyn., 20:1 (2015), 1–18  mathnet  crossref  mathscinet  zmath  adsnasa
    18. Francesco Fassò, Debra Lewis, “Erratum Erratum to: Stability Properties of the Riemann Ellipsoids”, Arch Rational Mech Anal, 212:3 (2014), 1065  crossref
    19. Gabriella Schirinzi, Massimiliano Guzzo, “On the formulation of new explicit conditions for steepness from a former result of N.N. Nekhoroshev”, Journal of Mathematical Physics, 54:7 (2013)  crossref
    20. Christos Efthymiopoulos, “High order normal form stability estimates for co-orbital motion”, Celest Mech Dyn Astr, 117:1 (2013), 101  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:145
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025