Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1998, Volume 3, Issue 3, Pages 56–72
DOI: https://doi.org/10.1070/RD1998v003n03ABEH000080
(Mi rcd948)
 

This article is cited in 39 scientific papers (total in 39 papers)

On the 70th birthday of J.Moser

Nekhoroshev-stability of $L_4$ and $L_5$ in the spatial restricted three-body problem

G. Benettina, F. Fassòb, M. Guzzob

a Materia and Gruppo Naziotiale di Fisica Matematica (CNR), Istituto Nazionale di Fisica della, Dipartimento di Matematica Pura e Applicata, Via G. Belzoni 7, 35131 Padova, Italy
b Gruppo Naziotiale di Fisica Matematica (CNR.), Dipartimento di Matematica Pura e Applicata, Via G. Belzoni 7, 35131 Padova, Italy
Citations (39)
Abstract: We show that $L_4$ and $L_5$ in the spatial restricted circular three-body problem are Nekhoroshev-stable for all but a few values of the reduced mass up to the Routh critical value. This result is based on two extensions of previous results on Nekhoroshev-stability of elliptic equilibria, namely to the case of "directional quasi-convexity", a notion introduced here, and to a (non-convex) steep case. We verify that the hypotheses are satisfied for $L_4$ and $L_5$ by means of numerically constructed Birkhoff normal forms.
Received: 07.10.1998
Bibliographic databases:
Document Type: Article
MSC: 58F10, 58F36, 70F07
Language: English
Citation: G. Benettin, F. Fassò, M. Guzzo, “Nekhoroshev-stability of $L_4$ and $L_5$ in the spatial restricted three-body problem”, Regul. Chaotic Dyn., 3:3 (1998), 56–72
Citation in format AMSBIB
\Bibitem{BenFasGuz98}
\by G.~Benettin, F.~Fass\`o, M.~Guzzo
\paper Nekhoroshev-stability of $L_4$ and $L_5$ in the spatial restricted three-body problem
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 3
\pages 56--72
\mathnet{http://mi.mathnet.ru/rcd948}
\crossref{https://doi.org/10.1070/RD1998v003n03ABEH000080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1704969}
\zmath{https://zbmath.org/?q=an:0934.70010}
Linking options:
  • https://www.mathnet.ru/eng/rcd948
  • https://www.mathnet.ru/eng/rcd/v3/i3/p56
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024