Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1998, Volume 3, Issue 3, Pages 10–17
DOI: https://doi.org/10.1070/RD1998v003n03ABEH000076
(Mi rcd944)
 

This article is cited in 28 scientific papers (total in 29 papers)

On the 70th birthday of J.Moser

Higher dimensional continued fractions

V. I. Arnold

Steklov Mathematical Institute, ul. Gublcina 8, Moscow 117966, Russia
Citations (29)
Abstract: The higher-dimensional analogue of a continuous fraction is the polyhedral surface, bounding the convex hull of the semigroup of the integer points in a simplicial cone of the euclidian space. The article describes some conjectures and theorems, extending to such higher-dimensional continouos fraction the Lagrange theorem on quadraticirrationals and the Gauss–Kuzmin statistics.
Received: 03.09.1998
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. I. Arnold, “Higher dimensional continued fractions”, Regul. Chaotic Dyn., 3:3 (1998), 10–17
Citation in format AMSBIB
\Bibitem{Arn98}
\by V. I. Arnold
\paper Higher dimensional continued fractions
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 3
\pages 10--17
\mathnet{http://mi.mathnet.ru/rcd944}
\crossref{https://doi.org/10.1070/RD1998v003n03ABEH000076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1704965}
\zmath{https://zbmath.org/?q=an:1044.11596}
Linking options:
  • https://www.mathnet.ru/eng/rcd944
  • https://www.mathnet.ru/eng/rcd/v3/i3/p10
  • This publication is cited in the following 29 articles:
    1. V. Berthé, K. Dajani, C. Kalle, E. Krawczyk, H. Kuru, A. Thevis, Association for Women in Mathematics Series, 32, Women in Numbers Europe IV, 2024, 111  crossref
    2. Roland Bacher, “Euclid meets Popeye: The Euclidean Algorithm for 2×2 Matrices”, Comptes Rendus. Mathématique, 361:G5 (2023), 889  crossref
    3. O. N. German, “Badly Approximable Matrices and Diophantine Exponents”, Dokl. Math., 106:S2 (2022), S201  crossref
    4. Mikhail Geraskin, Studies in Systems, Decision and Control, 338, Cyber-Physical Systems: Modelling and Intelligent Control, 2021, 309  crossref
    5. A. A. Illarionov, “The statistical properties of 3D Klein polyhedra”, Sb. Math., 211:5 (2020), 689–708  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. A. Illarionov, “Distribution of facets of higher-dimensional Klein polyhedra”, Sb. Math., 209:1 (2018), 56–70  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Gerardo Gonzalez Sprinberg, Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 2018, 593  crossref
    8. K. Spalding, A. P. Veselov, “Conway River and Arnold Sail”, Arnold Math J., 4:2 (2018), 169  crossref
    9. A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. A. D. Bryuno, “Universalnoe obobschenie algoritma tsepnoi drobi”, Chebyshevskii sb., 16:2 (2015), 35–65  mathnet  elib
    11. A. A. Illarionov, “On the statistical properties of Klein polyhedra in three-dimensional lattices”, Sb. Math., 204:6 (2013), 801–823  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. Oleg Karpenkov, Algorithms and Computation in Mathematics, 26, Geometry of Continued Fractions, 2013, 271  crossref
    13. Oleg Karpenkov, Algorithms and Computation in Mathematics, 26, Geometry of Continued Fractions, 2013, 215  crossref
    14. Kiumars Kaveh, Askold Khovanskii, “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. Math., 176:2 (2012), 925  crossref
    15. V. Berthé, “Numeration and discrete dynamical systems”, Computing, 94:2-4 (2012), 369  crossref
    16. Émilie Charrier, Fabien Feschet, Lilian Buzer, “Computing efficiently the lattice width in any dimension”, Theoretical Computer Science, 412:36 (2011), 4814  crossref
    17. A. D. Bruno, “Structure of the best diophantine approximations and multidimensional generalizations of the continued fraction”, Chebyshevskii sb., 11:1 (2010), 68–73  mathnet  mathscinet
    18. Oleg N. Karpenkov, Anatoly M. Vershik, “Rational approximation of maximal commutative subgroups of GL(n,R)”, J. Fixed Point Theory Appl., 7:1 (2010), 241  crossref
    19. Émilie Charrier, Lilian Buzer, Fabien Feschet, Lecture Notes in Computer Science, 5810, Discrete Geometry for Computer Imagery, 2009, 46  crossref
    20. O. N. German, E. L. Lakshtanov, “On a multidimensional generalization of Lagrange's theorem on continued fractions”, Izv. Math., 72:1 (2008), 47–61  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:392
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025