Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 1-2, Pages 21–32
DOI: https://doi.org/10.1134/S1560354713010024
(Mi rcd93)
 

This article is cited in 12 scientific papers (total in 12 papers)

Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid

Phanindra Tallapragada, Scott David Kelly

Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlott
Citations (12)
References:
Abstract: We describe a model for the dynamic interaction of a sphere with uniform density and a system of coaxial circular vortex rings in an ideal fluid of equal density. At regular intervals in time, a constraint is imposed that requires the velocity of the fluid relative to the sphere to have no component transverse to a particular circular contour on the sphere. In order to enforce this constraint, new vortex rings are introduced in a manner that conserves the total momentum in the system. This models the shedding of rings from a sharp physical ridge on the sphere coincident with the circular contour. If the position of the contour is fixed on the sphere, vortex shedding is a source of drag. If the position of the contour varies periodically, propulsive rings may be shed in a manner that mimics the locomotion of certain jellyfish. We present simulations representing both cases.
Keywords: fluid-body interactions, vortex rings, aquatic locomotion.
Funding agency Grant number
National Science Foundation CMMI-1000652
The material presented herein is based on work supported by the National Science Foundation under grant CMMI-1000652.
Received: 20.11.2012
Accepted: 11.03.2013
Bibliographic databases:
Document Type: Article
MSC: 76Z10, 76B47, 37J99
Language: English
Citation: Phanindra Tallapragada, Scott David Kelly, “Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid”, Regul. Chaotic Dyn., 18:1-2 (2013), 21–32
Citation in format AMSBIB
\Bibitem{TalKel13}
\by Phanindra Tallapragada, Scott David Kelly
\paper Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 21--32
\mathnet{http://mi.mathnet.ru/rcd93}
\crossref{https://doi.org/10.1134/S1560354713010024}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040980}
\zmath{https://zbmath.org/?q=an:1273.76460}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317623400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876075179}
Linking options:
  • https://www.mathnet.ru/eng/rcd93
  • https://www.mathnet.ru/eng/rcd/v18/i1/p21
  • This publication is cited in the following 12 articles:
    1. A. V. Klekovkin, Yu. L. Karavaev, A. A. Kilin, A. V. Nazarov, “Vliyanie khvostovykh plavnikov na skorost vodnogo robota, privodimogo v dvizhenie vnutrennimi podvizhnymi massami”, Kompyuternye issledovaniya i modelirovanie, 16:4 (2024), 869–882  mathnet  crossref
    2. Shashikanth B.N., “Poisson Brackets For the Dynamically Coupled System of a Free Boundary and a Neutrally Buoyant Rigid Body in a Body-Fixed Frame”, J. Geom. Mech., 12:1 (2020), 25–52  crossref  mathscinet  zmath  isi  scopus
    3. Pollard B., Tallapragada Ph., “Passive Appendages Improve the Maneuverability of Fishlike Robots”, IEEE-ASME Trans. Mechatron., 24:4 (2019), 1586–1596  crossref  isi
    4. Ph. Tallapragada, S. D. Kelly, “Integrability of velocity constraints modeling vortex shedding in ideal fluids”, J. Comput. Nonlinear Dyn., 12:2, SI (2017), 021008  crossref  isi  scopus
    5. V. Fedonyuk, Ph. Tallapragada, “The dynamics of a two link Chaplygin sleigh driven by an internal momentum wheel”, Proceedings of the American Control Conference, 2017 American Control Conference (ACC), IEEE, 2017, 2171–2175  crossref  isi
    6. Ph. Tallapragada, B. Pollard, V. Fedonyuk, “Dynamics of a circular cylinder with a passive degree of freedom interacting with an inviscid fluid containing a point vortex”, Proceedings of the ASME 10th Annual Dynamic Systems and Control Conference, v. 1, Amer. Soc. Mechanical Engineers, 2017, V001T08A004  isi
    7. E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332  mathnet  crossref  crossref  mathscinet  isi  elib
    8. P. Tallapragada, S. D. Kelly, “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids”, Eur. Phys. J.-Spec. Top., 224:17-18 (2015), 3185–3197  crossref  isi
    9. P. Tallapragada, S.D. Kelly, “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids”, Eur. Phys. J. Spec. Top., 224:17-18 (2015), 3185  crossref
    10. A. V. Borisov, A. A. Kilin, I. S. Mamaev, V. A. Tenenev, “The dynamics of vortex rings: leapfrogging in an ideal and viscous fluid”, Fluid Dyn. Res., 46:3 (2014), 031415  crossref  mathscinet  zmath  isi  scopus
    11. Evgeny V. Vetchanin, Ivan S. Mamaev, Valentin A. Tenenev, “The Self-propulsion of a Body with Moving Internal Masses in a Viscous Fluid”, Regul. Chaotic Dyn., 18:1-2 (2013), 100–117  mathnet  crossref  mathscinet  zmath
    12. Phanindra Tallapragada, Scott David Kelly, 2013 American Control Conference, 2013, 615  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:246
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025