Abstract:
We describe a model for the dynamic interaction of a sphere with uniform density and a system of coaxial circular vortex rings in an ideal fluid of equal density. At regular intervals in time, a constraint is imposed that requires the velocity of the fluid relative to the sphere to have no component transverse to a particular circular contour on the sphere. In order to enforce this constraint, new vortex rings are introduced in a manner that conserves the total momentum in the system. This models the shedding of rings from a sharp physical ridge on the sphere coincident with the circular contour. If the position of the contour is fixed on the sphere, vortex shedding is a source of drag. If the position of the contour varies periodically, propulsive rings may be shed in a manner that mimics the locomotion of certain jellyfish. We present simulations representing both cases.
Citation:
Phanindra Tallapragada, Scott David Kelly, “Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid”, Regul. Chaotic Dyn., 18:1-2 (2013), 21–32
\Bibitem{TalKel13}
\by Phanindra Tallapragada, Scott David Kelly
\paper Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 21--32
\mathnet{http://mi.mathnet.ru/rcd93}
\crossref{https://doi.org/10.1134/S1560354713010024}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040980}
\zmath{https://zbmath.org/?q=an:1273.76460}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317623400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876075179}
Linking options:
https://www.mathnet.ru/eng/rcd93
https://www.mathnet.ru/eng/rcd/v18/i1/p21
This publication is cited in the following 12 articles:
A. V. Klekovkin, Yu. L. Karavaev, A. A. Kilin, A. V. Nazarov, “Vliyanie khvostovykh plavnikov na skorost vodnogo robota, privodimogo v dvizhenie vnutrennimi podvizhnymi massami”, Kompyuternye issledovaniya i modelirovanie, 16:4 (2024), 869–882
Shashikanth B.N., “Poisson Brackets For the Dynamically Coupled System of a Free Boundary and a Neutrally Buoyant Rigid Body in a Body-Fixed Frame”, J. Geom. Mech., 12:1 (2020), 25–52
Pollard B., Tallapragada Ph., “Passive Appendages Improve the Maneuverability of Fishlike Robots”, IEEE-ASME Trans. Mechatron., 24:4 (2019), 1586–1596
Ph. Tallapragada, S. D. Kelly, “Integrability of velocity constraints modeling vortex shedding in ideal fluids”, J. Comput. Nonlinear Dyn., 12:2, SI (2017), 021008
V. Fedonyuk, Ph. Tallapragada, “The dynamics of a two link Chaplygin sleigh driven by an internal momentum wheel”, Proceedings of the American Control Conference, 2017 American Control Conference (ACC), IEEE, 2017, 2171–2175
Ph. Tallapragada, B. Pollard, V. Fedonyuk, “Dynamics of a circular cylinder with a passive degree of freedom interacting with an inviscid fluid containing a point vortex”, Proceedings of the ASME 10th Annual Dynamic Systems and Control Conference, v. 1, Amer. Soc. Mechanical Engineers, 2017, V001T08A004
E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332
P. Tallapragada, S. D. Kelly, “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids”, Eur. Phys. J.-Spec. Top., 224:17-18 (2015), 3185–3197
P. Tallapragada, S.D. Kelly, “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids”, Eur. Phys. J. Spec. Top., 224:17-18 (2015), 3185
A. V. Borisov, A. A. Kilin, I. S. Mamaev, V. A. Tenenev, “The dynamics of vortex rings: leapfrogging in an ideal and viscous fluid”, Fluid Dyn. Res., 46:3 (2014), 031415
Evgeny V. Vetchanin, Ivan S. Mamaev, Valentin A. Tenenev, “The Self-propulsion of a Body with Moving Internal Masses in a Viscous Fluid”, Regul. Chaotic Dyn., 18:1-2 (2013), 100–117
Phanindra Tallapragada, Scott David Kelly, 2013 American Control Conference, 2013, 615