Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1998, Volume 3, Issue 1, Pages 49–65
DOI: https://doi.org/10.1070/RD1998v003n01ABEH000060
(Mi rcd928)
 

This article is cited in 6 scientific papers (total in 6 papers)

On separatrix splitting of some quadratic area-preserving maps of the plane

V. L. Chernov

Faculty of Physics, Department of Mathematical Physics, Saint-Petersburg State University, Ulianovskaya str. 1/1, Petrodvorets, 198904, Saint-Petersburg, Russia
Citations (6)
Abstract: Hamiltonian dynamical systems are considered in this article. They come from iterations of area-preserving quadratic maps of the plain. Stable and unstable invariant curves of the map QM(u,v)=(v+u+u2,v+u2) passing across the origin are presented in the form of the Laplace's integrals from the same function but along the different contours. Also an asymptotic of their difference calculated splitting of the map HM(X,Y)=(Y+X+εX(1X),Y+εX(1X)). An asimptotic formula is given for a homoclinic invariant as ε0, but it did not prove rigorously.
Received: 15.01.1998
Bibliographic databases:
Document Type: Article
MSC: 58F05
Language: English
Citation: V. L. Chernov, “On separatrix splitting of some quadratic area-preserving maps of the plane”, Regul. Chaotic Dyn., 3:1 (1998), 49–65
Citation in format AMSBIB
\Bibitem{Che98}
\by V. L. Chernov
\paper On separatrix splitting of some quadratic area-preserving maps of the plane
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 1
\pages 49--65
\mathnet{http://mi.mathnet.ru/rcd928}
\crossref{https://doi.org/10.1070/RD1998v003n01ABEH000060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1704982}
\zmath{https://zbmath.org/?q=an:0924.58065}
Linking options:
  • https://www.mathnet.ru/eng/rcd928
  • https://www.mathnet.ru/eng/rcd/v3/i1/p49
  • This publication is cited in the following 6 articles:
    1. Hoai Nguyen Huynh, Thi Phuc Tan Nguyen, Lock Yue Chew, “Numerical simulation and geometrical analysis on the onset of chaos in a system of two coupled pendulums”, Communications in Nonlinear Science and Numerical Simulation, 18:2 (2013), 291  crossref
    2. Anton Gorodetski, “On Stochastic Sea of the Standard Map”, Commun. Math. Phys., 309:1 (2012), 155  crossref
    3. A. Gorodetski, V. Kaloshin, “Conservative Homoclinic Bifurcations and Some Applications”, Proc. Steklov Inst. Math., 267 (2009), 76–90  mathnet  mathnet  crossref  isi  scopus
    4. Rafael Ramírez-Ros, “Exponentially small separatrix splittings and almost invisible homoclinic bifurcations in some billiard tables”, Physica D: Nonlinear Phenomena, 210:3-4 (2005), 149  crossref
    5. V. G. Gelfreich, V. F. Lazutkin, “Splitting of separatrices: perturbation theory and exponential smallness”, Russian Math. Surveys, 56:3 (2001), 499–558  mathnet  mathnet  crossref  crossref  isi  scopus
    6. Vassili Gelfreich, “Splitting of a small separatrix loop near the saddle-center bifurcation in area-preserving maps”, Physica D: Nonlinear Phenomena, 136:3-4 (2000), 266  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025