Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1998, Volume 3, Issue 1, Pages 19–27
DOI: https://doi.org/10.1070/RD1998v003n01ABEH000058
(Mi rcd925)
 

This article is cited in 6 scientific papers (total in 6 papers)

Asymptotic normal forms for equilibria with a triplet of zero characteristic exponents in systems with symmetry

V. Pisarevskii, A. Shilnikov, D. Turaev

Department of Differential Equations, Institute for Applied Mathematics & Cybernetics, 10 Ulyanov Str., Nizhny Novgorod, 603005, Russia
Citations (6)
Abstract: Asymptotic normal forms for equilibria with a triplet of zero characteristic exponents in systems with Zq-symmetry are listed.
Received: 05.12.1997
Bibliographic databases:
Document Type: Article
MSC: 58F36
Language: English
Citation: V. Pisarevskii, A. Shilnikov, D. Turaev, “Asymptotic normal forms for equilibria with a triplet of zero characteristic exponents in systems with symmetry”, Regul. Chaotic Dyn., 3:1 (1998), 19–27
Citation in format AMSBIB
\Bibitem{PisShiTur98}
\by V. Pisarevskii, A. Shilnikov, D. Turaev
\paper Asymptotic normal forms for equilibria with a triplet of zero characteristic exponents in systems with symmetry
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 1
\pages 19--27
\mathnet{http://mi.mathnet.ru/rcd925}
\crossref{https://doi.org/10.1070/RD1998v003n01ABEH000058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1652156}
\zmath{https://zbmath.org/?q=an:1083.37520}
Linking options:
  • https://www.mathnet.ru/eng/rcd925
  • https://www.mathnet.ru/eng/rcd/v3/i1/p19
  • This publication is cited in the following 6 articles:
    1. Li D., Turaev D., “Persistent Heterodimensional Cycles in Periodic Perturbations of Lorenz-Like Attractors”, Nonlinearity, 33:3 (2020), 971–1015  crossref  mathscinet  zmath  isi  scopus
    2. Maciej J Capiński, Dmitry Turaev, Piotr Zgliczyński, “Computer assisted proof of the existence of the Lorenz attractor in the Shimizu–Morioka system”, Nonlinearity, 31:12 (2018), 5410  crossref
    3. I I Ovsyannikov, D V Turaev, “Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model”, Nonlinearity, 30:1 (2017), 115  crossref
    4. S.V. Gonchenko, A.S. Gonchenko, I.I. Ovsyannikov, D.V. Turaev, L. Lerman, D. Turaev, V. Vougalter, M. Zaks, “Examples of Lorenz-like Attractors in Hénon-like Maps”, Math. Model. Nat. Phenom., 8:5 (2013), 48  crossref
    5. C. TONIOLO, G. RUSSO, S. RESIDORI, C. TRESSER, “A PHENOMENOLOGICAL APPROACH TO NORMAL FORM MODELING: A CASE STUDY IN LASER INDUCED NEMATODYNAMICS”, Int. J. Bifurcation Chaos, 15:11 (2005), 3547  crossref
    6. Jan Sieber, Bernd Krauskopf, “Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity”, Nonlinearity, 17:1 (2004), 85  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:127
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025