Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 2, Pages 16–43
DOI: https://doi.org/10.1070/RD1999v004n02ABEH000103
(Mi rcd900)
 

This article is cited in 11 scientific papers (total in 11 papers)

Integrable and non-integrable deformations of the skew Hopf bifurcation

H. W. Broera, F. Takensa, F. O. O. Wagenerb

a University of Groningen, Department of Mathematics, P.O. Box 800, 9700 AV Groningen, Netherlands
b Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
Citations (11)
Abstract: In the skew Hopf bifurcation a quasi-periodic attractor with nontrivial normal linear dynamics loses hyperbolicity. Periodic, quasi-periodic and chaotic dynamics occur, including motion with mixed spectrum. The case of 3-dimensional skew Hopf bifurcation families of diffeomorphisms near integrability is discussed, surveying some recent results in a broad perspective. One result, using KAM-theory, deals with the persistence of quasi-periodic circles. Other results concern the bifurcations of periodic attractors in the case of resonance.
Received: 29.07.1999
Bibliographic databases:
Document Type: Article
Language: English
Citation: H. W. Broer, F. Takens, F. O. O. Wagener, “Integrable and non-integrable deformations of the skew Hopf bifurcation”, Regul. Chaotic Dyn., 4:2 (1999), 16–43
Citation in format AMSBIB
\Bibitem{BroTakWag99}
\by H.~W.~Broer, F. Takens, F. O. O. Wagener
\paper Integrable and non-integrable deformations of the skew Hopf bifurcation
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 2
\pages 16--43
\mathnet{http://mi.mathnet.ru/rcd900}
\crossref{https://doi.org/10.1070/RD1999v004n02ABEH000103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1781156}
\zmath{https://zbmath.org/?q=an:1012.37031}
Linking options:
  • https://www.mathnet.ru/eng/rcd900
  • https://www.mathnet.ru/eng/rcd/v4/i2/p16
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024