Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 1, Pages 51–69
DOI: https://doi.org/10.1070/RD1999v004n01ABEH000098
(Mi rcd894)
 

This article is cited in 8 scientific papers (total in 8 papers)

Making Fractals Fat

V. F. Lazutkin

St.-Petersburg State University, Petrodvorec, St.-Peterburg, 198904, Russi
Citations (8)
Abstract: An explicit contruction of a nonuniformly hyperbolic invariant set of positive Lebesgue measure in the phase space of an area-preserving map is suggested. The construction is based on the study of the web created by the stable and unstable manifolds of fixed hyperbolic points.
Received: 02.04.1999
Bibliographic databases:
Document Type: Article
MSC: 58F05, 58F36
Language: English
Citation: V. F. Lazutkin, “Making Fractals Fat”, Regul. Chaotic Dyn., 4:1 (1999), 51–69
Citation in format AMSBIB
\Bibitem{Laz99}
\by V. F. Lazutkin
\paper Making Fractals Fat
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 1
\pages 51--69
\mathnet{http://mi.mathnet.ru/rcd894}
\crossref{https://doi.org/10.1070/RD1999v004n01ABEH000098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1712732}
\zmath{https://zbmath.org/?q=an:1076.37506}
Linking options:
  • https://www.mathnet.ru/eng/rcd894
  • https://www.mathnet.ru/eng/rcd/v4/i1/p51
  • This publication is cited in the following 8 articles:
    1. Alexey V. Ivanov, “On $SL(2,\mathbb{R})$-Cocycles over Irrational Rotations with Secondary Collisions”, Regul. Chaotic Dyn., 28:2 (2023), 207–226  mathnet  crossref  mathscinet
    2. Alexey V. Ivanov, “On Singularly Perturbed Linear Cocycles over Irrational Rotations”, Regul. Chaotic Dyn., 26:3 (2021), 205–221  mathnet
    3. Alexey V. Ivanov, 2021 Days on Diffraction (DD), 2021, 1  crossref
    4. Alexey V. Ivanov, “On Singularly Perturbed Linear Cocycles over Irrational Rotations”, Regul. Chaot. Dyn., 26:3 (2021), 205  crossref
    5. Ivanov V A., “Exponential Dichotomy of Linear Cocycles Over Irrational Rotations”, Proceedings of the 2020 International Conference Days on Diffraction (Dd), ed. Motygin O. Kiselev A. Goray L. Zaboronkova T. Kazakov A. Kirpichnikova A., IEEE, 2020, 38–43  crossref  isi
    6. KATIE BLOOR, STEFANO LUZZATTO, “SOME REMARKS ON THE GEOMETRY OF THE STANDARD MAP”, Int. J. Bifurcation Chaos, 19:07 (2009), 2213  crossref
    7. J. Math. Sci. (N. Y.), 128:2 (2005), 2680–2685  mathnet  crossref  mathscinet
    8. A. Giorgilli, V.F. Lazutkin, “Some remarks on the problem of ergodicity of the Standard Map”, Physics Letters A, 272:5-6 (2000), 359  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:108
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025