Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 1, Pages 3–22
DOI: https://doi.org/10.1070/RD1999v004n01ABEH000096
(Mi rcd892)
 

This article is cited in 12 scientific papers (total in 12 papers)

Qualitative Aspects of Classical Potential Scattering

A. Knauf

Mathematisches Institut der Universitaet Erlangen-Nuernberg, Bismarck str, 1 1/2, D-91054, Erlangen
Citations (12)
Abstract: We derive criteria for the existence of trapped orbits (orbits which are scattering in the past and bounded in the future). Such orbits exist if the boundary of Hill's region is non-empty and not homeomorphic to a sphere. For non-trapping energies we introduce a topological degree which can be non-trivial for low energies, and for Coulombic and other singular potentials. A sum of non-trapping potentials of disjoint support is trapping iff at least two of them have non-trivial degree. For $d \geqslant 2$ dimensions the potential vanishes if for any energy above the non-trapping threshold the classical differential cross section is a continuous function of the asymptotic directions.
Received: 16.04.1999
Bibliographic databases:
Document Type: Article
MSC: 70F07
Language: English
Citation: A. Knauf, “Qualitative Aspects of Classical Potential Scattering”, Regul. Chaotic Dyn., 4:1 (1999), 3–22
Citation in format AMSBIB
\Bibitem{Kna99}
\by A.~Knauf
\paper Qualitative Aspects of Classical Potential Scattering
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/rcd892}
\crossref{https://doi.org/10.1070/RD1999v004n01ABEH000096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1712730}
\zmath{https://zbmath.org/?q=an:0982.81054}
Linking options:
  • https://www.mathnet.ru/eng/rcd892
  • https://www.mathnet.ru/eng/rcd/v4/i1/p3
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024