Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 1999, Volume 4, Issue 1, Pages 3–22
DOI: https://doi.org/10.1070/RD1999v004n01ABEH000096
(Mi rcd892)
 

This article is cited in 12 scientific papers (total in 12 papers)

Qualitative Aspects of Classical Potential Scattering

A. Knauf

Mathematisches Institut der Universitaet Erlangen-Nuernberg, Bismarck str, 1 1/2, D-91054, Erlangen
Citations (12)
Abstract: We derive criteria for the existence of trapped orbits (orbits which are scattering in the past and bounded in the future). Such orbits exist if the boundary of Hill's region is non-empty and not homeomorphic to a sphere. For non-trapping energies we introduce a topological degree which can be non-trivial for low energies, and for Coulombic and other singular potentials. A sum of non-trapping potentials of disjoint support is trapping iff at least two of them have non-trivial degree. For d2 dimensions the potential vanishes if for any energy above the non-trapping threshold the classical differential cross section is a continuous function of the asymptotic directions.
Received: 16.04.1999
Bibliographic databases:
Document Type: Article
MSC: 70F07
Language: English
Citation: A. Knauf, “Qualitative Aspects of Classical Potential Scattering”, Regul. Chaotic Dyn., 4:1 (1999), 3–22
Citation in format AMSBIB
\Bibitem{Kna99}
\by A.~Knauf
\paper Qualitative Aspects of Classical Potential Scattering
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/rcd892}
\crossref{https://doi.org/10.1070/RD1999v004n01ABEH000096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1712730}
\zmath{https://zbmath.org/?q=an:0982.81054}
Linking options:
  • https://www.mathnet.ru/eng/rcd892
  • https://www.mathnet.ru/eng/rcd/v4/i1/p3
  • This publication is cited in the following 12 articles:
    1. Martijn Kluitenberg, Diederik Roest, Marcello Seri, “Chaotic light scattering around extremal black holes”, Boll Unione Mat Ital, 16:2 (2023), 381  crossref
    2. Yuan Yao, “Phase spaces that cannot be cloned in classical mechanics”, Journal of Mathematical Physics, 64:10 (2023)  crossref
    3. Martynchuk N., Broer H.W., Efstathiou K., “Recent Advances in the Monodromy Theory of Integrable Hamiltonian Systems”, Indag. Math.-New Ser., 32:1 (2021), 193–223  crossref  mathscinet  isi  scopus
    4. Martynchuk N., Broer H.W., Efstathiou K., “Hamiltonian Monodromy and Morse Theory”, Commun. Math. Phys., 375:2 (2020), 1373–1392  crossref  mathscinet  isi  scopus
    5. Martynchuk N., Dullin H.R., Efstathiou K., Waalkens H., “Scattering Invariants in Euler'S Two-Center Problem”, Nonlinearity, 32:4 (2019), 1296–1326  crossref  mathscinet  zmath  isi  scopus
    6. Andreas Knauf, Marcello Seri, “Symbolic Dynamics of Magnetic Bumps”, Regul. Chaotic Dyn., 22:4 (2017), 448–454  mathnet  crossref
    7. Nikolay Martynchuk, Holger Waalkens, “Knauf’s Degree and Monodromy in Planar Potential Scattering”, Regul. Chaotic Dyn., 21:6 (2016), 697–706  mathnet  crossref
    8. Andreas Knauf, Frank Schulz, Karl Friedrich Siburg, “Positive topological entropy for multi-bump magnetic fields”, Nonlinearity, 26:3 (2013), 727  crossref
    9. A. GOURNAY, R. TIEDRA DE ALDECOA, “TIME DELAY AND CALABI INVARIANT IN CLASSICAL SCATTERING THEORY”, Rev. Math. Phys., 24:09 (2012), 1250023  crossref
    10. Daniel Blazevski, Rafael de la Llave, “Time-dependent scattering theory for ODEs and applications to reaction dynamics”, J. Phys. A: Math. Theor., 44:19 (2011), 195101  crossref
    11. Vladimir Buslaev, Alexander Pushnitski, “The Scattering Matrix and Associated Formulas in Hamiltonian Mechanics”, Commun. Math. Phys., 293:2 (2010), 563  crossref
    12. Andreas Knauf, Markus Krapf, “The non-trapping degree of scattering”, Nonlinearity, 21:9 (2008), 2023  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:115
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025