Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2000, Volume 5, Issue 4, Pages 477–484
DOI: https://doi.org/10.1070/RD2000v005n04ABEH000160
(Mi rcd891)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Meromorphic Non-Integrability of Euler's Equations on $so(4)$

I. Faye

Laboratoire Emile Picard, UMR 5580, Université Paul Sabatier 118, Route de Narbonne, 31062Toulouse cedex 04, FRANCE
Citations (1)
Abstract: We find the necessary conditions of existence of an additional meromorphic first integral of the Euler's equations on the Lie algebra $so(4)$.
Received: 26.07.2000
Bibliographic databases:
Document Type: Article
MSC: 32S70, 34A20
Language: English
Citation: I. Faye, “On the Meromorphic Non-Integrability of Euler's Equations on $so(4)$”, Regul. Chaotic Dyn., 5:4 (2000), 477–484
Citation in format AMSBIB
\Bibitem{Fay00}
\by I.~Faye
\paper On the Meromorphic Non-Integrability of Euler's Equations on $so(4)$
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 4
\pages 477--484
\mathnet{http://mi.mathnet.ru/rcd891}
\crossref{https://doi.org/10.1070/RD2000v005n04ABEH000160}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810627}
\zmath{https://zbmath.org/?q=an:1004.70012}
Linking options:
  • https://www.mathnet.ru/eng/rcd891
  • https://www.mathnet.ru/eng/rcd/v5/i4/p477
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024