Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2000, Volume 5, Issue 4, Pages 413–436
DOI: https://doi.org/10.1070/RD2000v005n04ABEH000157
(Mi rcd888)
 

This article is cited in 21 scientific papers (total in 21 papers)

Four-Vortex Motion in the Two Layer Approximation: Integrable Case

M. A. Sokolovskiya, J. Verronb

a Institute of Water Problems of the Russian Academy of Sciences, 3 Gubkina Str., 117735, Moscow, GSP-1, Russia
b Laboratoire des Ecoulements, Géophysiques et Industriels, UMR 5519, CNRS, BP53 X, 38041 Grenoble Cedex, France
Citations (21)
Abstract: The problem of four vortex lines with zero total circulation and zero impulse on a unlimited fluid plane, as it is known [1,3,4,16], is reduced to a problem of three point vortices and is integrated in quadratures. In the given work these results are transferred on a case of four vortices in a two-layer rotating liquid. The analysis of phase trajectories of relative motion of vortices is made, and the singularities of absolute motion on an example of a head-on, off-center collision of two two-layer vortex pairs are studied. In particular, the new class of quasistationary solutions for the given type of motions is obtained. The problems of interaction of the distributed (or finite-core) two-layer vortices are discussed.
Received: 16.11.2000
Bibliographic databases:
Document Type: Article
MSC: 76C05
Language: English
Citation: M. A. Sokolovskiy, J. Verron, “Four-Vortex Motion in the Two Layer Approximation: Integrable Case”, Regul. Chaotic Dyn., 5:4 (2000), 413–436
Citation in format AMSBIB
\Bibitem{SokVer00}
\by M. A. Sokolovskiy, J. Verron
\paper Four-Vortex Motion in the Two Layer Approximation: Integrable Case
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 4
\pages 413--436
\mathnet{http://mi.mathnet.ru/rcd888}
\crossref{https://doi.org/10.1070/RD2000v005n04ABEH000157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810624}
\zmath{https://zbmath.org/?q=an:0973.76018}
Linking options:
  • https://www.mathnet.ru/eng/rcd888
  • https://www.mathnet.ru/eng/rcd/v5/i4/p413
  • This publication is cited in the following 21 articles:
    1. Sokolovskiy M.A. Koshel K.V. Dritschel D.G. Reinaud J.N., “N-Symmetric Interaction of N Hetons. i. Analysis of the Case N=2”, Phys. Fluids, 32:9 (2020), 096601  crossref  isi  scopus
    2. Sokolovskiy M.A. Carton X.J. Filyushkin B.N., “Mathematical Modeling of Vortex Interaction Using a Three-Layer Quasigeostrophic Model. Part 1: Point-Vortex Approach”, Mathematics, 8:8 (2020), 1228  crossref  isi  scopus
    3. Koshel K.V. Ryzhov E.A. Carton X.J., “Vortex Interactions Subjected to Deformation Flows: a Review”, Fluids, 4:1 (2019), 14  crossref  isi  scopus
    4. J. N. Reinaud, M. A. Sokolovskiy, X. Carton, “Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability”, Physics of Fluids, 30:5 (2018)  crossref
    5. Eugene A. Ryzhov, Konstantin V. Koshel, “Parametric Instability of a Many Point-vortex System in a Multi-layer Flow Under Linear Deformation”, Regul. Chaotic Dyn., 21:3 (2016), 254–266  mathnet  crossref  mathscinet
    6. X. Carton, D. Ciani, J. Verron, J. Reinaud, M. Sokolovskiy, “Vortex merger in surface quasi-geostrophy”, Geophysical & Astrophysical Fluid Dynamics, 110:1 (2016), 1  crossref
    7. Jean N. Reinaud, Xavier Carton, “Head-on collisions between two quasi-geostrophic hetons in a continuously stratified fluid”, J. Fluid Mech., 779 (2015), 144  crossref
    8. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 1  crossref
    9. M.I. Jamaloodeen, “Integrable two layer point vortex motion on the half plane”, Journal of Geometry and Physics, 84 (2014), 55  crossref
    10. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 37  crossref
    11. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 317  crossref
    12. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 179  crossref
    13. M. A. Sokolovskiy, K. V. Koshel, J. Verron, “Three-vortex quasi-geostrophic dynamics in a two-layer fluid. Part 1. Analysis of relative and absolute motions”, J. Fluid Mech., 717 (2013), 232  crossref
    14. K. V. Koshel, M. A. Sokolovskiy, J. Verron, “Three-vortex quasi-geostrophic dynamics in a two-layer fluid. Part 2. Regular and chaotic advection around the perturbed steady states”, J. Fluid Mech., 717 (2013), 255  crossref
    15. A. I. Shavlyugin, “Two-layer quasi-geostrophic model of contour dynamics for a round basin”, Izv. Atmos. Ocean. Phys., 47:5 (2011), 619  crossref
    16. Ziv Kizner, “Stability of point-vortex multipoles revisited”, Physics of Fluids, 23:6 (2011)  crossref
    17. Mikhail A Sokolovskiy, Xavier J Carton, “Baroclinic multipole formation from heton interaction”, Fluid Dyn. Res., 42:4 (2010), 045501  crossref
    18. GREGORY REZNIK, ZIV KIZNER, “Two-layer quasi-geostrophic singular vortices embedded in a regular flow. Part 1. Invariants of motion and stability of vortex pairs”, J. Fluid Mech., 584 (2007), 185  crossref
    19. Denis Blackmore, Lu Ting, Omar Knio, “Studies of perturbed three vortex dynamics”, Journal of Mathematical Physics, 48:6 (2007)  crossref
    20. Mohamed I. Jamaloodeen, Paul K. Newton, “Two-layer quasigeostrophic potential vorticity model”, Journal of Mathematical Physics, 48:6 (2007)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025