Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2000, Volume 5, Issue 3, Pages 329–343
DOI: https://doi.org/10.1070/RD2000v005n03ABEH000152
(Mi rcd883)
 

This article is cited in 5 scientific papers (total in 5 papers)

Study of the Double Mathematical Pendulum — III. Melnikov's Method Applied to the System In the Limit of Small Ratio of Pendulums Masses

A. V. Ivanov

Physics Department, St.-Petersburg State University, Ulyanov str. 1, build. 1
Citations (5)
Abstract: We consider the double mathematical pendulum in the limit when the ratio of pendulums masses is close to zero and if the value of one of other system parameters is close to degenerate value (i.e. zero or infinity). We investigate homoclinic intersections, using Melnikov's method, and obtain an asymptotic formula for the homoclinic invariant in this case.
Received: 11.01.2000
Bibliographic databases:
Document Type: Article
MSC: 34C15, 58C25, 58F22
Language: English
Citation: A. V. Ivanov, “Study of the Double Mathematical Pendulum — III. Melnikov's Method Applied to the System In the Limit of Small Ratio of Pendulums Masses”, Regul. Chaotic Dyn., 5:3 (2000), 329–343
Citation in format AMSBIB
\Bibitem{Iva00}
\by A. V. Ivanov
\paper Study of the Double Mathematical Pendulum — III. Melnikov's Method Applied to the System In the Limit of Small Ratio of Pendulums Masses
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 3
\pages 329--343
\mathnet{http://mi.mathnet.ru/rcd883}
\crossref{https://doi.org/10.1070/RD2000v005n03ABEH000152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1789480}
\zmath{https://zbmath.org/?q=an:0993.34036}
Linking options:
  • https://www.mathnet.ru/eng/rcd883
  • https://www.mathnet.ru/eng/rcd/v5/i3/p329
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024