Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 4, Pages 455–476
DOI: https://doi.org/10.1134/S1560354716040055
(Mi rcd88)
 

This article is cited in 26 scientific papers (total in 26 papers)

Historical and Critical Review of the Development of Nonholonomic Mechanics: the Classical Period

Alexey V. Borisova, Ivan S. Mamaevb, Ivan A. Bizyaevc

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b Izhevsk State Technical University Studencheskaya 7, Izhevsk, 426069 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
Citations (26)
References:
Abstract: In this historical review we describe in detail the main stages of the development of nonholonomic mechanics starting from the work of Earnshaw and Ferrers to the monograph of Yu.I. Neimark and N.A. Fufaev. In the appendix to this review we discuss the d’Alembert–Lagrange principle in nonholonomic mechanics and permutation relations.
Keywords: nonholonomic mechanics, nonholonomic constraint, d’Alembert–Lagrange principle, permutation relations.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation
Russian Foundation for Basic Research 15-08-09261-a
15-38-20879 mol a ved
Russian Science Foundation 14-19-01303
The work of A.V.Borisov (Introduction and Sections 3, 4) was carried out within the framework of the state assignment for institutions of higher education and supported by the RFBR grant No. 15-08-09261-a. Appendix was prepared by I. S. Mamaev under the RSF grant No. 14-19-01303. Sections 1 and 2 were written by I.A.Bizyaev within the framework of the state assignment for institutions of higher education and supported by the RFBR grant No. 15-38-20879 mol a ved.
Bibliographic databases:
Document Type: Article
MSC: 37J60, 01A05
Language: English
Citation: Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “Historical and Critical Review of the Development of Nonholonomic Mechanics: the Classical Period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476
Citation in format AMSBIB
\Bibitem{BorMamBiz16}
\by Alexey~V.~Borisov, Ivan~S.~Mamaev, Ivan~A.~Bizyaev
\paper Historical and Critical Review of the Development of Nonholonomic Mechanics: the Classical Period
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 4
\pages 455--476
\mathnet{http://mi.mathnet.ru/rcd88}
\crossref{https://doi.org/10.1134/S1560354716040055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380679700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980398123}
Linking options:
  • https://www.mathnet.ru/eng/rcd88
  • https://www.mathnet.ru/eng/rcd/v21/i4/p455
    Translation
    This publication is cited in the following 26 articles:
    1. Víctor M. Jiménez, Manuel de León, “The nonholonomic bracket on contact mechanical systems”, Journal of Geometry and Physics, 213 (2025), 105484  crossref
    2. A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17  mathnet  crossref  mathscinet
    3. Lemos N.A., “Complete Inequivalence of Nonholonomic and Vakonomic Mechanics”, Acta Mech., 233:1 (2022), 47–56  crossref  mathscinet  isi  scopus
    4. E. M. Artemova, A. A. Kilin, “A Nonholonomic Model and Complete Controllability of a Three-Link Wheeled Snake Robot”, Rus. J. Nonlin. Dyn., 18:4 (2022), 681–707  mathnet  crossref  mathscinet
    5. Garcia Francisco Jesus Arjonilla, Kobayashi Yu., “Supervised learning of mapping from sensor space to chained form for unknown non-holonomic driftless systems”, Ind. Robot., 48:5 (2021), 710–719  crossref  isi  scopus
    6. Alfredo Delgado-Spindola, Victor Santibanez, Eusebio Bugarin, Juan Antonio Rojas-Quintero, 2021 9th International Conference on Systems and Control (ICSC), 2021, 178  crossref
    7. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref
    8. V. Gzenda, V. Putkaradze, “Integrability and chaos in figure skating”, J. Nonlinear Sci., 30:3 (2020), 831–850  crossref  mathscinet  zmath  isi  scopus
    9. A. V. Borisov, A. V. Tsiganov, “On rheonomic nonholonomic deformations of the Euler equations proposed by Bilimovich”, Theor. Appl. Mech., 47:2 (2020), 155–168  mathnet  crossref
    10. I. A. Bizyaev, I. S. Mamaev, “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550  crossref  mathscinet  isi  scopus
    11. Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    12. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  mathscinet
    13. A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Comment on “Confining rigid balls by mimicking quadrupole ion trapping” [Am. J. Phys. 85, 821 (2017)]”, Am. J. Phys., 87:11 (2019), 935–938  crossref  isi  scopus
    14. Y. Zhang, X. Tian, “Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem”, Phys. Lett. A, 383:8 (2019), 691–696  crossref  mathscinet  isi  scopus
    15. I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dyn., 95:1 (2019), 699–714  crossref  isi  scopus
    16. V. Putkaradze, S. Rogers, “On the dynamics of a rolling ball actuated by internal point masses”, Meccanica, 53:15 (2018), 3839–3868  crossref  mathscinet  isi  scopus
    17. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin ball on a rotating plane”, Russ. J. Math. Phys., 25:4 (2018), 423–433  crossref  mathscinet  zmath  isi  scopus
    18. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “Chaplygin sleigh with periodically oscillating internal mass”, EPL, 119:6 (2017), 60008  crossref  isi
    20. A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Hamilton'S Principle and the Rolling Motion of a Symmetric Ball”, Dokl. Phys., 62:6 (2017), 314–317  mathnet  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:376
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025