Abstract:
In this historical review we describe in detail the main stages of the development of nonholonomic mechanics starting from the work of Earnshaw and Ferrers to the monograph of Yu.I. Neimark and N.A. Fufaev. In the appendix to this review we discuss the d’Alembert–Lagrange principle in nonholonomic mechanics and permutation relations.
The work of A.V.Borisov (Introduction and Sections 3, 4) was carried out within the framework
of the state assignment for institutions of higher education and supported by the RFBR grant No. 15-08-09261-a. Appendix was prepared by I. S. Mamaev under the RSF grant No. 14-19-01303. Sections 1 and 2 were written by I.A.Bizyaev within the framework of the state assignment for institutions of higher education and supported by the RFBR grant No. 15-38-20879 mol a ved.
Citation:
Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “Historical and Critical Review of the Development of Nonholonomic Mechanics: the Classical Period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476
\Bibitem{BorMamBiz16}
\by Alexey~V.~Borisov, Ivan~S.~Mamaev, Ivan~A.~Bizyaev
\paper Historical and Critical Review of the Development of Nonholonomic Mechanics: the Classical Period
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 4
\pages 455--476
\mathnet{http://mi.mathnet.ru/rcd88}
\crossref{https://doi.org/10.1134/S1560354716040055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380679700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980398123}
This publication is cited in the following 26 articles:
Víctor M. Jiménez, Manuel de León, “The nonholonomic bracket on contact mechanical systems”, Journal of Geometry and Physics, 213 (2025), 105484
A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion
of a Dynamically Symmetric Spherical Top
with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17
Lemos N.A., “Complete Inequivalence of Nonholonomic and Vakonomic Mechanics”, Acta Mech., 233:1 (2022), 47–56
E. M. Artemova, A. A. Kilin, “A Nonholonomic Model and Complete Controllability
of a Three-Link Wheeled Snake Robot”, Rus. J. Nonlin. Dyn., 18:4 (2022), 681–707
Garcia Francisco Jesus Arjonilla, Kobayashi Yu., “Supervised learning of mapping from sensor space to chained form for unknown non-holonomic driftless systems”, Ind. Robot., 48:5 (2021), 710–719
Alfredo Delgado-Spindola, Victor Santibanez, Eusebio Bugarin, Juan Antonio Rojas-Quintero, 2021 9th International Conference on Systems and Control (ICSC), 2021, 178
Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236
V. Gzenda, V. Putkaradze, “Integrability and chaos in figure skating”, J. Nonlinear Sci., 30:3 (2020), 831–850
A. V. Borisov, A. V. Tsiganov, “On rheonomic nonholonomic deformations of the Euler equations proposed by Bilimovich”, Theor. Appl. Mech., 47:2 (2020), 155–168
I. A. Bizyaev, I. S. Mamaev, “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550
Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582
A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Comment on “Confining rigid balls by mimicking quadrupole ion trapping” [Am. J. Phys. 85, 821 (2017)]”, Am. J. Phys., 87:11 (2019), 935–938
Y. Zhang, X. Tian, “Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem”, Phys. Lett. A, 383:8 (2019), 691–696
I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dyn., 95:1 (2019), 699–714
V. Putkaradze, S. Rogers, “On the dynamics of a rolling ball actuated by internal point masses”, Meccanica, 53:15 (2018), 3839–3868
I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin ball on a rotating plane”, Russ. J. Math. Phys., 25:4 (2018), 423–433
A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840
I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “Chaplygin sleigh with periodically oscillating internal mass”, EPL, 119:6 (2017), 60008
A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Hamilton'S Principle and the Rolling Motion of a Symmetric Ball”, Dokl. Phys., 62:6 (2017), 314–317