Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2001, Volume 6, Issue 3, Pages 307–326
DOI: https://doi.org/10.1070/RD2001v006n03ABEH000179
(Mi rcd847)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the Invariant Separated Variables

A. V. Tsiganov

Department of Mathematical and Computational Physics, Institute of Physics, St. Petersburg University, 198904, St. Petersburg, Russia
Citations (8)
Abstract: An integrable Hamiltonian system on a Poisson manifold consists of a Lagrangian foliation $\mathscr{F}$ and a Hamilton function $H$. The invariant separated variables are independent on values of integrals of motion and Casimir functions. It means that they are invariant with respect to abelian group of symplectic diffeomorphisms of $\mathscr{F}$ and belong to the invariant intersection of all the subfoliations of $\mathscr{F}$. In this paper we show that for many known integrable systems this invariance property allows us to calculate their separated variables explicitly.
Received: 20.06.2001
Bibliographic databases:
Document Type: Article
MSC: 37K10, 37K30
Language: English
Citation: A. V. Tsiganov, “On the Invariant Separated Variables”, Regul. Chaotic Dyn., 6:3 (2001), 307–326
Citation in format AMSBIB
\Bibitem{Tsi01}
\by A. V. Tsiganov
\paper On the Invariant Separated Variables
\jour Regul. Chaotic Dyn.
\yr 2001
\vol 6
\issue 3
\pages 307--326
\mathnet{http://mi.mathnet.ru/rcd847}
\crossref{https://doi.org/10.1070/RD2001v006n03ABEH000179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1860149}
\zmath{https://zbmath.org/?q=an:0992.37051}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2001RCD.....6..307T}
Linking options:
  • https://www.mathnet.ru/eng/rcd847
  • https://www.mathnet.ru/eng/rcd/v6/i3/p307
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024