Abstract:
This paper is concerned with the problem of first integrals of the equations of geodesics on two-dimensional surfaces that are rational in the velocities (or momenta). The existence of nontrivial rational integrals with given values of the degrees of the numerator and the denominator is proved using the Cauchy–Kovalevskaya theorem.
This publication is cited in the following 25 articles:
Jaume Giné, Dmitry I. Sinelshchikov, “On the geometric and analytical properties of the anharmonic oscillator”, Communications in Nonlinear Science and Numerical Simulation, 131 (2024), 107875
Sergei V. Agapov, Maria V. Demina, “Integrable geodesic flows and metrisable second-order ordinary differential equations”, Journal of Geometry and Physics, 199 (2024), 105168
Sergei Agapov, Vladislav Shubin, “New examples of non-polynomial integrals of two-dimensional geodesic flows
*”, J. Phys. A: Math. Theor., 57:1 (2024), 015204
Sergey I. Agafonov, Thaís G. P. Alves, “Fractional-linear integrals of geodesic flows on surfaces and Nakai's geodesic 4-webs”, Advances in Geometry, 24:2 (2024), 263
A. V. Tsiganov, E. O. Porubov, “On a class of quadratic conservation laws for Newton equations in Euclidean space”, Theoret. and Math. Phys., 216:2 (2023), 1209–1237
Sergei Agapov, Alexey Potashnikov, Vladislav Shubin, “Integrable magnetic geodesic flows on 2-surfaces
*”, Nonlinearity, 36:4 (2023), 2128
S. V. Agapov, M. M. Tursunov, “On the Rational Integrals of Two-Dimensional Natural Systems”, Sib Math J, 64:4 (2023), 787
S. V. Agapov, “Nepolinomialnye integraly mnogomernykh geodezicheskikh potokov i algebry Li”, Sib. elektron. matem. izv., 19:2 (2022), 1088–1093
Agapov S. Shubin V., “Rational Integrals of 2-Dimensional Geodesic Flows: New Examples”, J. Geom. Phys., 170 (2021), 104389
Nikolay A. Kudryashov, “Lax Pairs and Special Polynomials Associated with Self-similar Reductions of Sawada – Kotera and Kupershmidt Equations”, Regul. Chaotic Dyn., 25:1 (2020), 59–77
S. V. Agapov, “On first integrals of two-dimensional geodesic flows”, Siberian Math. J., 61:4 (2020), 563–574
S. V. Agapov, “Rational integrals of a natural mechanical system on the 2-torus”, Siberian Math. J., 61:2 (2020), 199–207
N. V. Denisova, “Polynomial integrals of mechanical systems on a torus with a singular potential”, Dokl. Phys., 62:8 (2017), 397–399
N. V. Denisova, “O POLINOMIALNYKh INTEGRALAKh MEKhANIChESKIKh SISTEM NA TORE S?SINGULYaRNYM POTENTsIALOM, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 6, 634
V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290
Valery V. Kozlov, “On the Extendability of Noether’s Integrals for Orbifolds of Constant Negative Curvature”, Regul. Chaotic Dyn., 21:7-8 (2016), 821–831
A. Aoki, T. Houri, K. Tomoda, “Rational first integrals of geodesic equations and generalised hidden symmetries”, Classical Quantum Gravity, 33:19 (2016), 195003, 12 pp.
B. Kruglikov, V. S. Matveev, “The geodesic flow of a generic metric does not admit nontrivial integrals polynomial in momenta”, Nonlinearity, 29:6 (2016), 1755–1768
M. V. Pavlov, S. P. Tsarev, “On local description of two-dimensional geodesic flows with a polynomial first integral”, J. Phys. A, 49:17 (2016), 175201, 20 pp.