Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2003, Volume 8, Issue 3, Pages 259–282
DOI: https://doi.org/10.1070/RD2003v008n03ABEH000243
(Mi rcd781)
 

This article is cited in 19 scientific papers (total in 19 papers)

Stability and bifurcations for the $N+1$ vortex problem on the sphere

H. E. Cabrala, K. R. Meyerb, D. S. Schmidtc

a Departamento de Matemática, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
b Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025
c Department of Electrical & Computer, Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0030
Citations (19)
Abstract: The equations of motion for $N$ vortices on a sphere were derived by V.A.Bogomolov in 1977. References to related work can be found in the book by P.K.Newton. We use the equations of motion found there to discuss the stability of a ring of $N$ vortices of unit strength at the latitude $z$ together with a vortex of strength $\kappa$ at the north pole. The regions of stability are bounded by curves $\kappa = \kappa (z)$. These curves are computed explicitly for all values of $N$. When the stability of a configuration changes, for example by varying the strength of the vortex at the north pole, bifurcations to new configurations are possible. We compute the bifurcation equations explicitly for $N=2$,$3$ and $4$. For larger values of $N$ the complexity of the formal computations becomes too great and we use a numerical value for the latitude instead. We thus derive the bifurcation equations in a semi-numerical form. As expected the new configurations look very similar to those which had been found previously for the planar case.
Received: 23.05.2003
Bibliographic databases:
Document Type: Article
MSC: 76B47, 34K18, 34K20
Language: English
Citation: H. E. Cabral, K. R. Meyer, D. S. Schmidt, “Stability and bifurcations for the $N+1$ vortex problem on the sphere”, Regul. Chaotic Dyn., 8:3 (2003), 259–282
Citation in format AMSBIB
\Bibitem{CabMeySch03}
\by H.~E.~Cabral, K.~R.~Meyer, D.~S.~Schmidt
\paper Stability and bifurcations for the $N+1$ vortex problem on the sphere
\jour Regul. Chaotic Dyn.
\yr 2003
\vol 8
\issue 3
\pages 259--282
\mathnet{http://mi.mathnet.ru/rcd781}
\crossref{https://doi.org/10.1070/RD2003v008n03ABEH000243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2020843}
\zmath{https://zbmath.org/?q=an:1150.76348}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RCD.....8..259C}
Linking options:
  • https://www.mathnet.ru/eng/rcd781
  • https://www.mathnet.ru/eng/rcd/v8/i3/p259
  • This publication is cited in the following 19 articles:
    1. K. Constantineau, C. García-Azpeitia, L. C. García-Naranjo, J.-P. Lessard, “Determination of Stable Branches of Relative Equilibria of the N-Vortex Problem on the Sphere”, Commun. Math. Phys., 406:2 (2025)  crossref
    2. Artemova E. Kilin A., “Nonlinear Stability of Regular Vortex Polygons in a Bose-Einstein Condensate”, Phys. Fluids, 33:12 (2021), 127105  crossref  mathscinet  isi  scopus
    3. A. A. Kilin, E. M. Artemova, “Ustoichivost pravilnykh vikhrevykh mnogougolnikov v kondensate Boze–Einshteina”, Izv. IMI UdGU, 56 (2020), 20–29  mathnet  crossref
    4. Brian Menezes, Gareth E. Roberts, “Existence and Stability of Four-Vortex Collinear Relative Equilibria with Three Equal Vorticities”, SIAM J. Appl. Dyn. Syst., 17:1 (2018), 1023  crossref
    5. Adecarlos C. Carvalho, Hildeberto E. Cabral, “Lyapunov Orbits in the $n$-Vortex Problem on the Sphere”, Regul. Chaotic Dyn., 20:3 (2015), 234–246  mathnet  crossref  mathscinet  zmath  adsnasa
    6. Stefanella Boatto, Jair Koiller, Fields Institute Communications, 73, Geometry, Mechanics, and Dynamics, 2015, 185  crossref
    7. Adecarlos C. Carvalho, Hildeberto E. Cabral, “Lyapunov Orbits in the $n$-Vortex Problem”, Regul. Chaotic Dyn., 19:3 (2014), 348–362  mathnet  crossref  mathscinet  zmath
    8. Gareth E. Roberts, “Stability of Relative Equilibria in the Planar $n$-Vortex Problem”, SIAM J. Appl. Dyn. Syst., 12:2 (2013), 1114  crossref
    9. Paul K. Newton, Vitalii Ostrovskyi, “Energy-Momentum Stability of Icosahedral Configurations of Point Vortices on a Sphere”, J Nonlinear Sci, 22:4 (2012), 499  crossref
    10. Frederic Laurent-Polz, James Montaldi, Mark Roberts, “Point vortices on the sphere: Stability of symmetric relative equilibria”, Journal of Geometric Mechanics, 3:4 (2011), 439  crossref
    11. V. V. Meleshko, P. K. Newton, V. V. Ostrovs'kyi, “Stability of the configurations of point vortices on a sphere”, J Math Sci, 171:5 (2010), 603  crossref
    12. Paul K Newton, Takashi Sakajo, “Point vortex equilibria on the sphere via Brownian ratchets”, Proc. R. Soc. A., 465:2102 (2009), 437  crossref
    13. George Chamoun, Eva Kanso, Paul K. Newton, “Von Kármán vortex streets on the sphere”, Physics of Fluids, 21:11 (2009)  crossref
    14. Takashi Sakajo, Kazuyuki Yagasaki, “Chaotic Motion of the N-Vortex Problem on a Sphere: I. Saddle-Centers in Two-Degree-of-Freedom Hamiltonians”, J Nonlinear Sci, 18:5 (2008), 485  crossref
    15. Takashi Sakajo, Kazuyuki Yagasaki, “Chaotic motion of the -vortex problem on a sphere: II. Saddle centers in three-degree-of-freedom Hamiltonians”, Physica D: Nonlinear Phenomena, 237:14-17 (2008), 2078  crossref
    16. Paul K Newton, Takashi Sakajo, “The N -vortex problem on a rotating sphere. III. Ring configurations coupled to a background field”, Proc. R. Soc. A., 463:2080 (2007), 961  crossref
    17. Takashi Sakajo, “Invariant dynamical systems embedded in the N-vortex problem on a sphere with pole vortices”, Physica D: Nonlinear Phenomena, 217:2 (2006), 142  crossref
    18. Paul K Newton, Houman Shokraneh, “TheN-vortex problem on a rotating sphere. I Multi-frequency configurations”, Proc. R. Soc. A., 462:2065 (2006), 149  crossref
    19. L. G. Kurakin, “On nonlinear stability of the regular vortex systems on a sphere”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14:3 (2004), 592  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:107
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025