Processing math: 0%
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2003, Volume 8, Issue 1, Pages 105–123
DOI: https://doi.org/10.1070/RD2003v008n01ABEH000229
(Mi rcd769)
 

This article is cited in 17 scientific papers (total in 17 papers)

Dynamics of billiards

The Wagner Curvature Tenzor in Nonholonomic Mechanics

V. Dragovićab, B. Gajićb

a SISSA, Trieste, Italy
b Mathematical Institute, Belgrade, Yugoslavia
Citations (17)
Abstract: We present the classical Wagner construction from 1935 of the curvature tensor for the completely nonholonomic manifolds in both invariant and coordinate way. The starting point is the Shouten curvature tensor for the nonholonomic connection introduced by Vranceanu and Shouten. We illustrate the construction by two mechanical examples: the case of a homogeneous disc rolling without sliding on a horizontal plane and the case of a homogeneous ball rolling without sliding on a fixed sphere. In the second case we study the conditions imposed on the ratio of diameters of the ball and the sphere to obtain a flat space — with the Wagner curvature tensor equal to zero.
Received: 15.01.2003
Bibliographic databases:
Document Type: Article
MSC: 37J05, 37J60
Language: English
Citation: V. Dragović, B. Gajić, “The Wagner Curvature Tenzor in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 8:1 (2003), 105–123
Citation in format AMSBIB
\Bibitem{DraGaj03}
\by V. Dragovi\'c, B. Gaji\'c
\paper The Wagner Curvature Tenzor in Nonholonomic Mechanics
\jour Regul. Chaotic Dyn.
\yr 2003
\vol 8
\issue 1
\pages 105--123
\mathnet{http://mi.mathnet.ru/rcd769}
\crossref{https://doi.org/10.1070/RD2003v008n01ABEH000229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1963972}
\zmath{https://zbmath.org/?q=an:1023.37036}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RCD.....8..105D}
Linking options:
  • https://www.mathnet.ru/eng/rcd769
  • https://www.mathnet.ru/eng/rcd/v8/i1/p105
  • This publication is cited in the following 17 articles:
    1. Barrett I D., Remsing C.C., “On the Schouten and Wagner Curvature Tensors”, Rend. Circ. Mat. Palermo, 2021  crossref  isi  scopus
    2. Barrett I D., Remsing C.C., “Restricted Jacobi Fields”, Int. Electron. J. Geom., 14:2 (2021), 247–265  crossref  mathscinet  isi  scopus
    3. Alekseevsky D., “Shortest and Straightest Geodesics in Sub-Riemannian Geometry”, J. Geom. Phys., 155 (2020), 103713  crossref  mathscinet  zmath  isi  scopus
    4. Kurt M. Ehlers, Jair Koiller, “Cartan meets Chaplygin”, Theor. Appl. Mech., 46:1 (2019), 15–46  mathnet  crossref
    5. Oliva W.M., Terra G., “Improving E. Cartan Considerations on the Invariance of Nonholonomic Mechanics”, J. Geom. Mech., 11:3 (2019), 439–446  crossref  mathscinet  zmath  isi  scopus
    6. Barrett I D., Remsing C.C., “A Note on Flat Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups”, Beitr. Algebr. Geom., 60:3 (2019), 419–436  crossref  mathscinet  zmath  isi  scopus
    7. Gajic B. Jovanovic B., “Nonholonomic Connections, Time Reparametrizations, and Integrability of the Rolling Ball Over a Sphere”, Nonlinearity, 32:5 (2019), 1675–1694  crossref  mathscinet  zmath  isi  scopus
    8. Alekseevsky D., Medvedev A., Slovak J., “Constant Curvature Models in Sub-Riemannian Geometry”, J. Geom. Phys., 138 (2019), 241–256  crossref  mathscinet  zmath  isi  scopus
    9. Barrett I D., Remsing C.C., “On Geodesic Invariance and Curvature in Nonholonomic Riemannian Geometry”, Publ. Math.-Debr., 94:1-2 (2019), 197–213  crossref  mathscinet  zmath  isi  scopus
    10. Božidar Jovanović, “Rolling balls over spheres in \newcommand{\m}{\mathfrak m} {\mathbb{R}^n}”, Nonlinearity, 31:9 (2018), 4006  crossref
    11. Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi, “Invariant nonholonomic Riemannian structures on three-dimensional Lie groups”, JGM, 8:2 (2016), 139  crossref
    12. Xian Guo, ShuGen Ma, Bin Li, MingHui Wang, 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), 2014, 582  crossref
    13. O. E. Fernandez, A. M. Bloch, “The Weitzenböck connection and time reparameterization in nonholonomic mechanics”, Journal of Mathematical Physics, 52:1 (2011)  crossref
    14. SABRINA CASANOVA, ORCHIDEA MARIA LECIAN, GIOVANNI MONTANI, REMO RUFFINI, ROUSTAM ZALALETDINOV, “EXTENDED SCHOUTEN CLASSIFICATION FOR NON-RIEMANNIAN GEOMETRIES”, Mod. Phys. Lett. A, 23:01 (2008), 17  crossref
    15. P. Ya. Grozman, D. A. Leites, “Nonholonomic Riemann and Weyl tensors for flag manifolds”, Theoret. and Math. Phys., 153:2 (2007), 1511–1538  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Aurel Bejancu, “On the geometry of nonholonomic mechanical systems with vertical distribution”, Journal of Mathematical Physics, 48:5 (2007)  crossref
    17. D. A. Leites, “On computer-aided solving differential equations and stability study of markets”, J. Math. Sci. (N. Y.), 133:4 (2006), 1464–1476  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:150
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025