Abstract:
The method of polynomials is used to construct two families of stationary point vortex configurations. The vortices are placed at the reciprocals of the zeroes of Bessel polynomials. Configurations that translate uniformly, and configurations that are completely stationary, are obtained in this way.
Keywords:
point vortex, equilibrium, polynomial method.
\Bibitem{One16}
\by Kevin A. O'Neil
\paper Point Vortex Equilibria Related to Bessel Polynomials
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 3
\pages 249--253
\mathnet{http://mi.mathnet.ru/rcd76}
\crossref{https://doi.org/10.1134/S1560354716030011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3508230}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377616400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84975832586}
Linking options:
https://www.mathnet.ru/eng/rcd76
https://www.mathnet.ru/eng/rcd/v21/i3/p249
This publication is cited in the following 2 articles:
Peter A. Clarkson, Chun-Kong Law, Chia-Hua Lin, “A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation”, SIGMA, 19 (2023), 080, 20 pp.
Kevin A. O'Neil, “Relations Satisfied by Point Vortex Equilibria with Strength Ratio $-2$”, Regul. Chaotic Dyn., 23:5 (2018), 580–582