Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 3, Pages 249–253
DOI: https://doi.org/10.1134/S1560354716030011
(Mi rcd76)
 

This article is cited in 2 scientific papers (total in 2 papers)

Point Vortex Equilibria Related to Bessel Polynomials

Kevin A. O'Neil

Department of Mathematics, The University of Tulsa, 800 Tucker Dr., Tulsa, OK, 74104, USA
Citations (2)
References:
Abstract: The method of polynomials is used to construct two families of stationary point vortex configurations. The vortices are placed at the reciprocals of the zeroes of Bessel polynomials. Configurations that translate uniformly, and configurations that are completely stationary, are obtained in this way.
Keywords: point vortex, equilibrium, polynomial method.
Received: 20.01.2016
Accepted: 23.03.2016
Bibliographic databases:
Document Type: Article
MSC: 76B47, 37F10, 34M15
Language: English
Citation: Kevin A. O'Neil, “Point Vortex Equilibria Related to Bessel Polynomials”, Regul. Chaotic Dyn., 21:3 (2016), 249–253
Citation in format AMSBIB
\Bibitem{One16}
\by Kevin A. O'Neil
\paper Point Vortex Equilibria Related to Bessel Polynomials
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 3
\pages 249--253
\mathnet{http://mi.mathnet.ru/rcd76}
\crossref{https://doi.org/10.1134/S1560354716030011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3508230}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377616400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84975832586}
Linking options:
  • https://www.mathnet.ru/eng/rcd76
  • https://www.mathnet.ru/eng/rcd/v21/i3/p249
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:176
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024