Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2004, Volume 9, Issue 3, Pages 299–336
DOI: https://doi.org/10.1070/RD2004v009n03ABEH000282
(Mi rcd748)
 

This article is cited in 1 scientific paper (total in 1 paper)

Effective computations in modern dynamics

Sharp upper bounds for splitting of separatrices near a simple resonance

M. Rudnev, V. Ten

Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
Citations (1)
Abstract: General theory for the splitting of separatrices near simple resonances of near-Liouville-integrable Hamiltonian systems is developed in the convex real-analytic setting. A generic estimate
$$|\mathfrak{S}_k| \leqslant O(\sqrt{\varepsilon}) \times \exp \biggl[- \biggl \vert k \cdot \biggl(c_1 \frac{\omega}{\sqrt{\varepsilon}} + c_2 \biggl) \biggl \vert -|k| \sigma \biggr], k \in \mathbb{Z}^n \backslash \{0\}$$
is proved for the Fourier coefficients of the splitting distance measure $\mathfrak{S}(\phi), \phi \in \mathbb{T}^n$, describing the intersections of Lagrangian manifolds, asymptotic to invariant $n$-tori, $\varepsilon$ being the perturbation parameter. The constants $\omega \in \mathbb{R}^n$, $c_1$,$\sigma>0$,$c_2 \in \mathbb{R}^n$ are characteristic of the given problem (the Hamiltonian and the resonance), cannot be improved and can be calculated explicitly, given an example. The theory allows for optimal parameter dependencies in the smallness condition for $\varepsilon$.
Received: 09.08.2004
Bibliographic databases:
Document Type: Article
MSC: 70H08, 70H20
Language: English
Citation: M. Rudnev, V. Ten, “Sharp upper bounds for splitting of separatrices near a simple resonance”, Regul. Chaotic Dyn., 9:3 (2004), 299–336
Citation in format AMSBIB
\Bibitem{RudTen04}
\by M. Rudnev, V. Ten
\paper Sharp upper bounds for splitting of separatrices near a simple resonance
\jour Regul. Chaotic Dyn.
\yr 2004
\vol 9
\issue 3
\pages 299--336
\mathnet{http://mi.mathnet.ru/rcd748}
\crossref{https://doi.org/10.1070/RD2004v009n03ABEH000282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2104174}
\zmath{https://zbmath.org/?q=an:1102.70008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RCD.....9..299R}
Linking options:
  • https://www.mathnet.ru/eng/rcd748
  • https://www.mathnet.ru/eng/rcd/v9/i3/p299
  • This publication is cited in the following 1 articles:
    1. Mikko Stenlund, “An expansion of the homoclinic splitting matrix for the rapidly, quasiperiodically, forced pendulum”, Journal of Mathematical Physics, 51:7 (2010)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:108
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025