Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2004, Volume 9, Issue 2, Pages 143–162
DOI: https://doi.org/10.1070/RD2004v009n02ABEH000272
(Mi rcd738)
 

This article is cited in 5 scientific papers (total in 5 papers)

Dynamics of a family of non-critically finite even transcendental meromorphic functions

M. Sajid, G. P. Kapoor

Indian Institute of Technology Kanpur - 208 016, India, Department of Mathematics
Citations (5)
Abstract: The dynamics of one parameter family of non-critically finite even transcendental meromorphic function $\xi_{\lambda}(z) = \lambda \frac{\sinh^2 z}{z^4}, \lambda > 0$ is investigated in the present paper. It is shown that bifurcations in the dynamics of the function $\xi_{\lambda}(x)$ for $x \in \mathbb{R} \backslash {0}$ occur at two critical parameter values $\lambda = \frac{x_1^5}{\sinh^2 x_1}(\approx 1.26333)$ and $\lambda = \frac{\tilde{x}^5} {\sinh^2 \tilde{x}}(\approx 2.7.715)$, where $x_1$ and $\tilde{x}$ are the unique positive real roots of the equations $\tanh x = \frac{2 x}{3}$ and $\tanh x = \frac{2x}{5}$ respectively. For certain ranges of parameter values of $\lambda$, it is proved that the Julia set of the function $\xi_{\lambda}(z)$ contains both real and imaginary axes. The images of the Julia sets of $\xi_{\lambda}(z)$ are computer generated by using the characterization of the Julia set of $\xi_{\lambda}(z)$ as the closure of the set of points whose orbits escape to infinity under iterations. Finally, our results are compared with the recent results on dynamics of (i) critically finite transcendental meromorphic functions $\lambda \tan z$ having polynomial Schwarzian Derivative [10,15,19] and (ii) non-critically finite transcendental entire functions $\lambda \frac{e^z-1}{z} $[14].
Received: 09.05.2004
Bibliographic databases:
Document Type: Article
MSC: 30D05, 37F70, 37F50
Language: English
Citation: M. Sajid, G. P. Kapoor, “Dynamics of a family of non-critically finite even transcendental meromorphic functions”, Regul. Chaotic Dyn., 9:2 (2004), 143–162
Citation in format AMSBIB
\Bibitem{SajKap04}
\by M.~Sajid, G. P. Kapoor
\paper Dynamics of a family of non-critically finite even transcendental meromorphic functions
\jour Regul. Chaotic Dyn.
\yr 2004
\vol 9
\issue 2
\pages 143--162
\mathnet{http://mi.mathnet.ru/rcd738}
\crossref{https://doi.org/10.1070/RD2004v009n02ABEH000272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2081553}
\zmath{https://zbmath.org/?q=an:1079.37043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RCD.....9..143S}
Linking options:
  • https://www.mathnet.ru/eng/rcd738
  • https://www.mathnet.ru/eng/rcd/v9/i2/p143
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024