Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2004, Volume 9, Issue 2, Pages 101–111
DOI: https://doi.org/10.1070/RD2004v009n02ABEH000269
(Mi rcd735)
 

This article is cited in 28 scientific papers (total in 28 papers)

Absolute and relative choreographies in the problem of point vortices moving on a plane

A. V. Borisov, I. S. Mamaev, A. A. Kilin

Institute of Computer Science, 1, Universitetskaya str. 426034, Izhevsk, Russia
Citations (28)
Abstract: We obtained new periodic solutions in the problems of three and four point vortices moving on a plane. In the case of three vortices, the system is reduced to a Hamiltonian system with one degree of freedom, and it is integrable. In the case of four vortices, the order is reduced to two degrees of freedom, and the system is not integrable. We present relative and absolute choreographies of three and four vortices of the same intensity which are periodic motions of vortices in some rotating and fixed frame of reference, where all the vortices move along the same closed curve. Similar choreographies have been recently obtained by C. Moore, A. Chenciner, and C. Simo for the n-body problem in celestial mechanics [6, 7, 17]. Nevertheless, the choreographies that appear in vortex dynamics have a number of distinct features.
Received: 05.04.2004
Bibliographic databases:
Document Type: Article
MSC: 76B47, 37J35, 70E40
Language: English
Citation: A. V. Borisov, I. S. Mamaev, A. A. Kilin, “Absolute and relative choreographies in the problem of point vortices moving on a plane”, Regul. Chaotic Dyn., 9:2 (2004), 101–111
Citation in format AMSBIB
\Bibitem{BorMamKil04}
\by A. V. Borisov, I. S. Mamaev, A. A. Kilin
\paper Absolute and relative choreographies in the problem of point vortices moving on a plane
\jour Regul. Chaotic Dyn.
\yr 2004
\vol 9
\issue 2
\pages 101--111
\mathnet{http://mi.mathnet.ru/rcd735}
\crossref{https://doi.org/10.1070/RD2004v009n02ABEH000269}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2081550}
\zmath{https://zbmath.org/?q=an:1079.76020}
Linking options:
  • https://www.mathnet.ru/eng/rcd735
  • https://www.mathnet.ru/eng/rcd/v9/i2/p101
  • This publication is cited in the following 28 articles:
    1. E. M. Artemova, “Dinamika dvukh vikhrei na konechnom ploskom tsilindre”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:4 (2023), 642–658  mathnet  crossref
    2. Artemova E. Kilin A., “Nonlinear Stability of Regular Vortex Polygons in a Bose-Einstein Condensate”, Phys. Fluids, 33:12 (2021), 127105  crossref  mathscinet  isi  scopus
    3. Elizaveta M. Artemova, Alexander A. Kilin, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1  crossref
    4. Sokolovskiy M.A., Koshel K.V., Dritschel D.G., Reinaud J.N., “N-Symmetric Interaction of N Hetons. i. Analysis of the Case N=2”, Phys. Fluids, 32:9 (2020), 096601  crossref  isi  scopus
    5. Ivan S. Mamaev, Ivan A. Bizyaev, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    6. P. E. Ryabov, S. V. Sokolov, “Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate”, Rus. J. Nonlin. Dyn., 15:1 (2019), 59–66  mathnet  crossref  elib
    7. Alexander A. Kilin, Lizaveta M. Artemova, “Integrability and Chaos in Vortex Lattice Dynamics”, Regul. Chaotic Dyn., 24:1 (2019), 101–113  mathnet  crossref
    8. Pavel E. Ryabov, Artemiy A. Shadrin, “Bifurcation Diagram of One Generalized Integrable Model of Vortex Dynamics”, Regul. Chaotic Dyn., 24:4 (2019), 418–431  mathnet  crossref  mathscinet
    9. Garcia-Azpeitia C., “Relative Periodic Solutions of the N-Vortex Problem on the Sphere”, J. Geom. Mech., 11:3 (2019), 427–438  crossref  mathscinet  zmath  isi  scopus
    10. P. E. Ryabov, “Bifurcations of Liouville tori in a system of two vortices of positive intensity in a Bose–Einstein condensate”, Dokl. Math., 99:2 (2019), 225–229  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    11. Wang Q., “Relative Periodic Solutions of the N-Vortex Problem Via the Variational Method”, Arch. Ration. Mech. Anal., 231:3 (2019), 1401–1425  crossref  mathscinet  zmath  isi  scopus
    12. Renato C. Calleja, Eusebius J. Doedel, Carlos García-Azpeitia, “Choreographies in the n-vortex Problem”, Regul. Chaotic Dyn., 23:5 (2018), 595–612  mathnet  crossref
    13. Renato Calleja, Eusebius Doedel, Carlos García-Azpeitia, Carlos L. Pando L., “Choreographies in the discrete nonlinear Schrödinger equations”, Eur. Phys. J. Spec. Top., 227:5-6 (2018), 615  crossref
    14. Antonio Hernández-Garduño, Banavara N Shashikanth, “Reconstruction phases in the planar three- and four-vortex problems”, Nonlinearity, 31:3 (2018), 783  crossref
    15. Adecarlos C. Carvalho, Hildeberto E. Cabral, “Lyapunov Orbits in the $n$-Vortex Problem on the Sphere”, Regul. Chaotic Dyn., 20:3 (2015), 234–246  mathnet  crossref  mathscinet  zmath  adsnasa
    16. Adecarlos C. Carvalho, Hildeberto E. Cabral, “Lyapunov Orbits in the $n$-Vortex Problem”, Regul. Chaotic Dyn., 19:3 (2014), 348–362  mathnet  crossref  mathscinet  zmath
    17. E. V. Vetchanin, A. O. Kazakov, “Bifurkatsii i khaos v zadache o dvizhenii dvukh tochechnykh vikhrei v akusticheskoi volne”, Nelineinaya dinam., 10:3 (2014), 329–343  mathnet
    18. Joris Vankerschaver, Melvin Leok, “A Novel Formulation of Point Vortex Dynamics on the Sphere: Geometrical and Numerical Aspects”, J Nonlinear Sci, 24:1 (2014), 1  crossref
    19. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 317  crossref
    20. Mikhail A. Sokolovskiy, Jacques Verron, Atmospheric and Oceanographic Sciences Library, 47, Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014, 179  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:147
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025