Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 2, Pages 160–174
DOI: https://doi.org/10.1134/S1560354716020027
(Mi rcd72)
 

This article is cited in 12 scientific papers (total in 12 papers)

Verification of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics

Sergey P. Kuznetsovabc, Vyacheslav P. Kruglovcb

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034, Russia
b Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019, Russia
c Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012, Russia
Citations (12)
References:
Abstract: Computer verification of hyperbolicity is provided based on statistical analysis of the angles of intersection of stable and unstable manifolds for mechanical systems with hyperbolic attractors of Smale – Williams type: (i) a particle sliding on a plane under periodic kicks, (ii) interacting particles moving on two alternately rotating disks, and (iii) a string with parametric excitation of standing-wave patterns by a modulated pump. The examples are of interest as contributing to filling the hyperbolic theory of dynamical systems with physical content.
Keywords: dynamical system, chaos, attractor, hyperbolic dynamics, Lyapunov exponent, Smale – Williams solenoid, parametric oscillations.
Funding agency Grant number
Russian Science Foundation 15-12-20035
This work was supported by RSF grant No 15-12-20035.
Received: 06.12.2015
Accepted: 15.02.2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sergey P. Kuznetsov, Vyacheslav P. Kruglov, “Verification of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 160–174
Citation in format AMSBIB
\Bibitem{KuzKru16}
\by Sergey P. Kuznetsov, Vyacheslav P. Kruglov
\paper Verification of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 2
\pages 160--174
\mathnet{http://mi.mathnet.ru/rcd72}
\crossref{https://doi.org/10.1134/S1560354716020027}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3486003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374286800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963761043}
Linking options:
  • https://www.mathnet.ru/eng/rcd72
  • https://www.mathnet.ru/eng/rcd/v21/i2/p160
  • This publication is cited in the following 12 articles:
    1. Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum: Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130  mathnet  crossref  mathscinet
    2. Miguel A. Prado Reynoso, Marcus W. Beims, “Studying finite-time (non)-domination in dynamical systems using Oseledec's splitting. Application to the standard map”, Communications in Nonlinear Science and Numerical Simulation, 110 (2022), 106358  crossref
    3. M. A. Prado Reynoso, R. M. da Silva, M. W. Beims, “Studying partial hyperbolicity inside regimes of motion in Hamiltonian systems”, Chaos Solitons Fractals, 144 (2021), 110640  crossref  mathscinet  isi  scopus
    4. S. V. Gonchenko, D. V. Turaev, A. O. Kazakov, M. H. Kaynov, “On Methods For Verification of the Pseudohyperbolicity of Strange Attractors”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 29:1 (2021), 160–185  mathnet  crossref  isi  scopus
    5. Yu. V. Bakhanova, A. O. Kazakov, E. Yu. Karatetskaia, A. D. Kozlov, K. A. Safonov, “On homoclinic attractors of three-dimensional flows”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 28:3 (2020), 231–258  crossref  isi  scopus
    6. S. P. Kuznetsov, V. P. Kruglov, “Hyperbolic chaos in a system of two Froude pendulums with alternating periodic braking”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 152–161  crossref  mathscinet  isi  scopus
    7. P. V. Kuptsov, S. P. Kuznetsov, “Numerical test for hyperbolicity in chaotic systems with multiple time delays”, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 227–239  crossref  mathscinet  isi  scopus
    8. V. M. Doroshenko, V. P. Kruglov, S. P. Kuznetsov, “Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators”, Nelin. Dinam., 14:4 (2018), 435–451  mathnet  crossref  elib
    9. V. M. Doroshenko, V. P. Kruglov, S. P. Kuznetsov, “Generator khaosa s attraktorom Smeila–Vilyamsa na osnove effekta gibeli kolebanii”, Nelineinaya dinam., 13:3 (2017), 303–315  mathnet  crossref  elib
    10. V. M. Doroshenko, V. P. Kruglov, M. V. Pozdnyakov, “Robust chaos in systems of circular geometry”, 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), IEEE, 2017, 3122–3128  crossref  isi
    11. P. V. Kuptsov, S. P. Kuznetsov, “Numerical test for hyperbolicity of chaotic dynamics in time-delay systems”, Phys. Rev. E, 94:1 (2016), 010201  crossref  isi  scopus
    12. S. P. Kuznetsov, “Ot dinamiki Anosova na poverkhnosti otritsatelnoi krivizny k elektronnomu generatoru grubogo khaosa”, Izv. Sarat. un-ta. Nov. cer. Ser. Fizika, 16:3 (2016), 131–144  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:334
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025