Processing math: 100%
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 3, Pages 257–266
DOI: https://doi.org/10.1070/RD2005v010n03ABEH000314
(Mi rcd709)
 

This article is cited in 15 scientific papers (total in 15 papers)

150th anniversary of H. Poincaré

Superintegrable systems on a sphere

A. V. Borisov, I. S. Mamaev

Institute of Computer Science, Udmurt State University, 1 Universitetskaya str., 426034 Izhevsk, Russia
Citations (15)
Abstract: We consider various generalizations of the Kepler problem to three-dimensional sphere S3, (a compact space of constant curvature). In particular, these generalizations include addition of a spherical analogue of the magnetic monopole (the Poincaré–Appell system) and addition of a more complicated field which is a generalization of the MICZ-system. The mentioned systems are integrable superintegrable, and there exists the vector integral which is analogous to the Laplace–Runge–Lenz vector. We offer a classification of the motions and consider a trajectory isomorphism between planar and spatial motions. The presented results can be easily extended to Lobachevsky space L3.
Keywords: spaces of constant curvature, Kepler problem, integrability.
Received: 25.10.2004
Accepted: 15.02.2005
Bibliographic databases:
Document Type: Article
MSC: 37N05, 70F10
Language: English
Citation: A. V. Borisov, I. S. Mamaev, “Superintegrable systems on a sphere”, Regul. Chaotic Dyn., 10:3 (2005), 257–266
Citation in format AMSBIB
\Bibitem{BorMam05}
\by A. V. Borisov, I. S. Mamaev
\paper Superintegrable systems on a sphere
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 3
\pages 257--266
\mathnet{http://mi.mathnet.ru/rcd709}
\crossref{https://doi.org/10.1070/RD2005v010n03ABEH000314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2155186}
\zmath{https://zbmath.org/?q=an:1077.37520}
Linking options:
  • https://www.mathnet.ru/eng/rcd709
  • https://www.mathnet.ru/eng/rcd/v10/i3/p257
  • This publication is cited in the following 15 articles:
    1. Ctirad Klimčík, “Superintegrability, symmetry and point particle T-duality”, Int. J. Geom. Methods Mod. Phys., 20:13 (2023)  crossref
    2. Cezary Gonera, Joanna Gonera, Javier de Lucas, Wioletta Szczesek, Bartosz M. Zawora, “More on Superintegrable Models on Spaces of Constant Curvature”, Regul. Chaotic Dyn., 27:5 (2022), 561–571  mathnet  crossref  mathscinet
    3. Nataliya A. Balabanova, James A. Montaldi, “Two-body Problem on a Sphere in the Presence of a Uniform Magnetic Field”, Regul. Chaotic Dyn., 26:4 (2021), 370–391  mathnet  crossref  mathscinet
    4. Gonera C. Gonera J., “New Superintegrable Models on Spaces of Constant Curvature”, Ann. Phys., 413 (2020), 168052  crossref  mathscinet  zmath  isi  scopus
    5. Maciejewski A.J., Przybylska M., Yaremko Yu., “Dynamics of a Dipole in a Stationary Electromagnetic Field”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 475:2229 (2019), 20190230  crossref  mathscinet  isi  scopus
    6. Latini D., “Universal Chain Structure of Quadratic Algebras For Superintegrable Systems With Coalgebra Symmetry”, J. Phys. A-Math. Theor., 52:12 (2019), 125202  crossref  isi  scopus
    7. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity”, Regul. Chaotic Dyn., 21:5 (2016), 556–580  mathnet  crossref  mathscinet  zmath  elib
    8. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Superintegrable Generalizations of the Kepler and Hook Problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434  mathnet  crossref  mathscinet  zmath
    9. Valery V. Kozlov, “Remarks on Integrable Systems”, Regul. Chaotic Dyn., 19:2 (2014), 145–161  mathnet  crossref  isi  scopus
    10. Richard Montgomery, “MICZ-Kepler: Dynamics on the Cone over SO(n)”, Regul. Chaotic Dyn., 18:6 (2013), 600–607  mathnet  crossref  mathscinet  zmath
    11. O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev, “A generalization of Bertrand's theorem to surfaces of revolution”, Sb. Math., 203:8 (2012), 1112–1150  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. A. A. Burov, “On the motion of a solid body on spherical surfaces”, Journal of Mathematical Sciences, 199:5 (2014), 501–509  mathnet  crossref  mathscinet
    13. A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Superintegrable system on a sphere with the integral of higher degree”, Regul. Chaotic Dyn., 14:6 (2009), 615–620  mathnet  crossref
    14. Manuele Santoprete, “Gravitational and harmonic oscillator potentials on surfaces of revolution”, Journal of Mathematical Physics, 49:4 (2008)  crossref
    15. G.W. Gibbons, C.M. Warnick, “Hidden symmetry of hyperbolic monopole motion”, Journal of Geometry and Physics, 57:11 (2007), 2286  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:134
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025