Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 2, Pages 153–171
DOI: https://doi.org/10.1070/RD2005v010n02ABEH000309
(Mi rcd704)
 

This article is cited in 25 scientific papers (total in 25 papers)

150th anniversary of H. Poincaré

Construction of Kolmogorov's normal form for a planetary system

U. Locatellia, A. Giorgillib

a Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
b Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via R. Cozzi 53, 20125 Milano, Italy
Citations (25)
Abstract: We describe an algorithm constructing an invariant KAM torus for a class of planetary systems, such that the mutual attractions, the eccentricities and the inclinations of the planets are small enough. By using computer algebra, we explicitly implement this algorithm for approximating a KAM torus for the problem of three bodies in a case similar to the Sun–Jupiter–Saturn system. We show that, by reducing the masses of the planets by a factor 10 and with a small displacement of the orbits, our semianalytical construction of the torus turns out to be successful.
Keywords: three-body problem, $n$-body problem, KAM theory, perturbation methods, Hamiltonian systems, celestial mechanics.
Received: 06.04.2005
Accepted: 03.06.2005
Bibliographic databases:
Document Type: Article
Language: English
Citation: U. Locatelli, A. Giorgilli, “Construction of Kolmogorov's normal form for a planetary system”, Regul. Chaotic Dyn., 10:2 (2005), 153–171
Citation in format AMSBIB
\Bibitem{LocGio05}
\by U.~Locatelli, A. Giorgilli
\paper Construction of Kolmogorov's normal form for a planetary system
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 2
\pages 153--171
\mathnet{http://mi.mathnet.ru/rcd704}
\crossref{https://doi.org/10.1070/RD2005v010n02ABEH000309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2159013}
\zmath{https://zbmath.org/?q=an:1128.70304}
Linking options:
  • https://www.mathnet.ru/eng/rcd704
  • https://www.mathnet.ru/eng/rcd/v10/i2/p153
  • This publication is cited in the following 25 articles:
    1. Jordi-Lluís Figueras, Alex Haro, “Sun–Jupiter–Saturn System May Exist: A Verified Computation of Quasiperiodic Solutions for the Planar Three-Body Problem”, J Nonlinear Sci, 35:1 (2025)  crossref
    2. Veronica Danesi, Ugo Locatelli, Marco Sansottera, “Existence proof of librational invariant tori in an averaged model of HD60532 planetary system”, Celest Mech Dyn Astron, 135:3 (2023)  crossref
    3. Marco Sansottera, Veronica Danesi, “Kolmogorov variation: KAM with knobs (à la Kolmogorov)”, MINE, 5:5 (2023), 1  crossref
    4. Xuefeng Zhao, Yong Li, “KAM in Generalized Hamiltonian Systems with Multi-Scales”, J Dyn Diff Equat, 35:4 (2023), 2971  crossref
    5. Alessandra Celletti, Encyclopedia of Complexity and Systems Science, 2023, 1  crossref
    6. Alessandra Celletti, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 339  crossref
    7. Àngel Jorba, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 153  crossref
    8. Àngel Jorba, Encyclopedia of Complexity and Systems Science, 2022, 1  crossref
    9. Alessandra Celletti, Encyclopedia of Complexity and Systems Science, 2022, 1  crossref
    10. Antonio Giorgilli, Ugo Locatelli, Marco Sansottera, “Secular Dynamics of a Planar Model of the Sun-Jupiter-Saturn-Uranus System; Effective Stability in the Light of Kolmogorov and Nekhoroshev Theories”, Regul. Chaotic Dyn., 22:1 (2017), 54–77  mathnet  crossref
    11. Àlex Haro, Alejandro Luque, Applied Mathematical Sciences, 195, The Parameterization Method for Invariant Manifolds, 2016, 119  crossref
    12. Letizia Stefanelli, Ugo Locatelli, “Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods”, DCDS-B, 20:4 (2015), 1155  crossref
    13. M. Sansottera, U. Locatelli, A. Giorgilli, “On the stability of the secular evolution of the planar Sun–Jupiter–Saturn–Uranus system”, Mathematics and Computers in Simulation, 88 (2013), 1  crossref
    14. Anne-Sophie Libert, Marco Sansottera, “On the extension of the Laplace-Lagrange secular theory to order two in the masses for extrasolar systems”, Celest Mech Dyn Astr, 117:2 (2013), 149  crossref
    15. Alessandra Celletti, Mathematics of Complexity and Dynamical Systems, 2012, 1301  crossref
    16. Marco Sansottera, Ugo Locatelli, Antonio Giorgilli, “A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems”, Celest Mech Dyn Astr, 111:3 (2011), 337  crossref
    17. Alessandra Celletti, “Some KAM applications to Celestial Mechanics”, Discrete & Continuous Dynamical Systems - S, 3:4 (2010), 533  crossref
    18. Yuecai Han, Yong Li, Yingfei Yi, “Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy”, Ann. Henri Poincaré, 10:8 (2010), 1419  crossref
    19. Elena Lega, Massimiliano Guzzo, Claude Froeschlé, “A numerical study of the size of the homoclinic tangle of hyperbolic tori and its correlation with Arnold diffusion in Hamiltonian systems”, Celest Mech Dyn Astr, 107:1-2 (2010), 129  crossref
    20. E. Lega, M. Guzzo, C. Froeschlé, “Numerical studies of hyperbolic manifolds supporting diffusion in symplectic mappings”, Eur. Phys. J. Spec. Top., 186:1 (2010), 3  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:115
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025