Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 1, Pages 113–118
DOI: https://doi.org/10.1070/RD2005v010n01ABEH000304
(Mi rcd700)
 

Sweep out and chaos

H. Wanga, J. Xiongb

a Department of Mathematics, Guangzhou University, 248, Guangyanan Middle Rd, 510405 Guangzhou, China
b Department of Mathematics, South China Normal University, Shipai, 510631 Guangzhou, China
Abstract: Let $X$ be a compact metric space and let $\mathscr{B}$ be a $\sigma$-algebra of all Borel subsets of $X$. Let $m$ be a probability outer measure on $X$ with the properties that each non-empty open set has non-zero m-measure and every open set is $m$-measurable. And for every subset $Y$ of $X$ there is a Borel set $B$ of $X$ such that $Y \subset B$ and $m(Y) = m(B)$. We prove that $f : (X, \mathscr{B},m) \to (X,B,m)$ sweeps out if and only if for any increasing sequence $J$ of positive integers, there is a finitely chaotic set $C$ for $f$ with respect to $J$ such that $m(C)=1$.
Keywords: sweep out, chaos, measure.
Received: 01.03.2005
Accepted: 21.03.2005
Bibliographic databases:
Document Type: Article
MSC: 28A78
Language: English
Citation: H. Wang, J. Xiong, “Sweep out and chaos”, Regul. Chaotic Dyn., 10:1 (2005), 113–118
Citation in format AMSBIB
\Bibitem{WanXio05}
\by H.~Wang, J.~Xiong
\paper Sweep out and chaos
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 1
\pages 113--118
\mathnet{http://mi.mathnet.ru/rcd700}
\crossref{https://doi.org/10.1070/RD2005v010n01ABEH000304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2136834}
\zmath{https://zbmath.org/?q=an:1081.37010}
Linking options:
  • https://www.mathnet.ru/eng/rcd700
  • https://www.mathnet.ru/eng/rcd/v10/i1/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:140
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024